Rommeswinkel, Hendrik (2019): Procedural Mixture Spaces.
PDF
MPRA_paper_92535.pdf Download (160kB) |
Abstract
This paper provides a representation theorem for procedural mixture spaces. Procedural mixture spaces are mixture spaces in which it is not necessarily true that a mixture of two identical elements yields the same element. Under the remaining standard assumptions of mixture spaces, the following representation theorem is proven; a rational, independent, and continuous preference relation over mixture spaces can be represented either by expected utility plus the Shannon entropy or by expected utility under probability distortions plus the Renyi entropy. The entropy components can be interpreted as the utility or disutility from resolving the mixture and therefore as a procedural as opposed to consequentialist value.
Item Type: | MPRA Paper |
---|---|
Original Title: | Procedural Mixture Spaces |
Language: | English |
Keywords: | Risk, decision theory, procedural value, lotteries, mixture spaces |
Subjects: | D - Microeconomics > D0 - General > D01 - Microeconomic Behavior: Underlying Principles D - Microeconomics > D0 - General > D03 - Behavioral Microeconomics: Underlying Principles D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty |
Item ID: | 92535 |
Depositing User: | Prof. Hendrik Rommeswinkel |
Date Deposited: | 07 Mar 2019 02:12 |
Last Modified: | 29 Sep 2019 07:25 |
References: | Allais, M. (1953, October). Le Comportement de l'Homme Rationnel devant le Risque: Critique des Postulats et Axiomes de l'Ecole Americaine. Econo metrica, 21(4), 503. doi:10.2307/1907921 Caplin, A., Dean, M., & Leahy, J. (2017, August). Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy (No. w23652). National Bureau of Economic Research. Cambridge, MA. doi:10.3386/w23652 Ebanks, B. R., Kannappan, P., & Ng, C. T. (1987, December). Generalized fundamental equation of information of multiplicative type. Aequationes Mathematicae, 32(1), 19-31. doi:10.1007/BF02311295 Frankel, D. & Volij, O. (2011). Measuring school segregation. Journal of Economic Theory, 146(1), 1-38. Herstein, I. N. & Milnor, J. (1953, April). An Axiomatic Approach to Measur able Utility. Econometrica, 21(2), 291-297. doi:10.2307/1905540. JSTOR: 1905540?origin=crossref Nehring, K. & Puppe, C. (2009). Diversity. In Handbook of Rational and Social Choice. Oxford, UK: Oxford University Press. Qin, W.-z. & Rommeswinkel, H. (2018). Quasi-separable Preferences. Rényi, A. (1961). On measures of information and entropy. In Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability 1960 (pp. 547-561). Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27(3), 379-423, 623-656. Shorrocks, A. F. (1980, April). The Class of Additively Decomposable Inequality Measures. Econometrica, 48(3), 613. doi:10.2307/1913126. JSTOR: 1913126? origin=crossref Sims, C. A. (2003, April). Implications of rational inattention. Journal of Monetary Economics, 50(3), 665-690. doi:10.1016/S0304-3932(03)00029-1 Suppes, P. (1996). The nature and measurement of freedom. Social Choice and Welfare, 13(2), 183-200. von Neumann, J. & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton University Press. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/92535 |