Пигнастый, Олег and Ходусов, Валерий and Азаренков, Николай (2014): Кинетическая теория колебаний параметров поточной линии. Published in: Reports of the National Academy of Sciences of Ukraine , Vol. 12, (1 December 2014): pp. 36-43.
PDF
MPRA_paper_93991.pdf Download (334kB) |
Abstract
Рассмотрена общая задача о развитии начального возмущения потоковых параметров синхронизированной производственной линии. Записано кинетическое уравнение технологического процесса. Получено дисперсионное уравнение и исследованы собственные колебания потоковых параметров производственной линии. Определены условия, выполнение которых обеспечивает затухание колебаний потоковых параметров.
The general task about the development of initial indignation of stream parameters of the synchronized production line is considered. The kinetic equation of the technological process is written down. The dispersive equation is received and own fluctuations of stream parameters of the production line are investigated. Conditions of attenuation of fluctuations of stream parameters are defined.
Item Type: | MPRA Paper |
---|---|
Original Title: | Кинетическая теория колебаний параметров поточной линии |
English Title: | Kinetic theory of fluctuations of the parameters of a production line |
Language: | Russian |
Keywords: | kinetic equation; production line; PDE-model; the dispersion equation; the object of labor; management system; process; oscillation flow parameters; stability; damping |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C44 - Operations Research ; Statistical Decision Theory D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity L - Industrial Organization > L2 - Firm Objectives, Organization, and Behavior > L23 - Organization of Production |
Item ID: | 93991 |
Depositing User: | Oleh Mikhalovych Pihnastyi |
Date Deposited: | 21 May 2019 04:32 |
Last Modified: | 21 Oct 2019 07:41 |
References: | 1. Gross D., Harris C. M. Fundamentals of queueing theory. New York: Wiley, 1985. 2. Harrison J. Brownian motion and stochastic flow systems. New York: Wiley, 1995. 3. Ramadge P. Wonham W. Proc. IEEE, 1989, 77, No 1: 81–98. https://doi.org/10.1109/5.21072 4. Berg R. Partial differential equations in modelling and control of manufacturing systems, “M. S. thesis”. Eindhoven: Eindhoven Univ. Technol., 2004. 5. Armbruster D., Kempf K. G. The production planning problem: Clearing functions, variable leads times, delay equations and partial differential equations The production planning problem: Clearing functions, variable leads times, delay equations and partial differential equations. In: Decision Policies for Production Networks, Berlin: Springer, 2012: 289–303. https://doi.org/10.1007/978-0-85729-644-3_12 6. Lefeber E. Berg R., Rooda J. Modeling, Validation and Control of Manufacturing Systems. Paper presented at the Proceeding of the 2004 American Control Conference, Boston, Massachusetts, 2004. – P. 4583 – 4588. 7. Berg R. Lefeber E., Rooda J. IEEE Trans. on Control Systems Technology, 2008, 16, No 1: 130–136. https://doi.org/10.1109/TCST.2007.903085 8. Armbruster D., Ringhofer C., Jo T.-J. American Control Conference, 2004: 4589–4594. 9. Pignastui O. M. Statistical theory of production systems. Kharkov: Izd-vo Khark. Nac. Univ. V. N. Karazina, 2007 (in Russian). 10. Armbruster D., Marthaler D., Ringhofer C. Bull. Inst. Math., 2007, 2: 896–920. 11. Zhang L. System-theoretic properties of production lines. A dissertation submitted for the degree of Doctor of Philosophy (Electr. Engin. Systems). Michigan, 2009. 12. Armbruster D., Degond P., Ringhofer C. SIAM J. Appl. Math., 2006, 83: 896–920. https://doi.org/10.1137/040604625 13. Problems in the theory of analytic functions (Eds Evgrafov M. A., Bezhanov K. A., Sidorov Yu. V., Fedoruk M. B., Shabunin M. I.) Moscow: Nauka, 1972 (in Russian). 14. Tian F., Willems S., Kempf K. Intern. J. Production Economics, 2011, 133: 439–450. https://doi.org/10.1016/j.ijpe.2010.07.011 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/93991 |