Vondra, Marek and Touš, Michal and Teng, Sin Yong (2019): Digestate Evaporation Treatment in Biogas Plants: A Techno-economic Assessment by Monte Carlo, Neural Networks and Decision Trees. Published in: Journal of Cleaner Production , Vol. 238, No. 117870 (20 November 2019)
PDF
MPRA_paper_95770.pdf Download (3MB) |
Abstract
Biogas production is one of the most promising pathways toward fully utilizing green energy within a circular economy. The anaerobic digestion process is the industry standard technology for biogas production due to its lowered energy consumption and its reliance on microbiology. Even in such an environmental-friendly process, liquid digestate is still produced from the remains of digested bio-feedstock and will require treatment. With unsuitable treatment procedure for liquid digestate, the mass of bio-feedstock can potentially escape the circular supply chain within the economy. This paper recommends the implementation of evaporator systems to provide a sustainable liquid digestate treating mechanism within the economy. Studied evaporator systems are represented by vacuum evaporation in combination with ammonia scrubber, stripping and reverse osmosis. Nevertheless, complex multi-dimensional decisions should be made by stakeholders before implementing such systems. Our work utilizes a novel techno-economics model to study the techno-economics robustness in implementing recent state-of-art vacuum evaporation systems with exploitation of waste heat from combined heat and power (CHP) units in biogas plants (BGP). To take into the account the stochasticity of the real world and robustness of the analysis, we used the Monte-Carlo simulation technique to generate more than 20,000 of different possibilities for the implementation of the evaporation system. Favourable decision pathways are then selected using a novel methodology which utilizes the artificial neural network and a hyper-optimized decision tree classifier. Two pathways that give the highest probability of providing a fast payback period are identified. Descriptive statistics are also used to analyse the distributions of decision parameters that lead to success in implementing the evaporator system. The results highlighted that integration of evaporation system are favourable when transport costs and incentives for CHP units are large and while feed-in tariffs for electricity production and specific investment costs are low. The result of this work is expected to pave the way for BGP stakeholders and decision makers in implementing liquid digestate treating technologies within the currently existing infrastructure.
Item Type: | MPRA Paper |
---|---|
Original Title: | Digestate Evaporation Treatment in Biogas Plants: A Techno-economic Assessment by Monte Carlo, Neural Networks and Decision Trees |
English Title: | Digestate Evaporation Treatment in Biogas Plants: A Techno-economic Assessment by Monte Carlo, Neural Networks and Decision Trees |
Language: | English |
Keywords: | Anaerobic Digestion; Machine Learning; Vacuum Evaporation; Liquid Digestate; Biogas Plant; Energy Consumption; Nutrient Recovery; Circular economy; Ammonium sulphate solution |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs E - Macroeconomics and Monetary Economics > E0 - General E - Macroeconomics and Monetary Economics > E2 - Consumption, Saving, Production, Investment, Labor Markets, and Informal Economy E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles E - Macroeconomics and Monetary Economics > E6 - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook L - Industrial Organization > L1 - Market Structure, Firm Strategy, and Market Performance L - Industrial Organization > L6 - Industry Studies: Manufacturing L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities |
Item ID: | 95770 |
Depositing User: | Dr Sin Yong Teng |
Date Deposited: | 19 Oct 2019 15:08 |
Last Modified: | 19 Oct 2019 15:08 |
References: | Al Seadi, T., Drosg, B., Fuchs, W., Rutz, D., Janssen, R., 2013. Biogas digestate quality and utilization, in: The Biogas Handbook. Elsevier, pp. 267–301. doi.org/10.1533/9780857097415.2.267 Auburger, S., Wustholz, R., Petig, E., Bahrs, E., 2015. Biogas digestate and its economic impact on farms and biogas plants according to the upper limit for nitrogen spreading—the case of nutrient-burdened areas in north-west Germany. AIMS Energy 3, 740–759. doi.org/10.3934/energy.2015.4.740 Azouma, Y.O., Jegla, Z., Reppich, M., Turek, V., Weiß, M., 2018. Using agricultural waste for biogas production as a sustainable energy supply for developing countries. Chem. Eng. Trans. 70, 445–450. doi.org/10.3303/CET1870075 Bamelis, L., Blancke, M.A., Camargo-Valero, L., De Clercq, A., Haumont, B., De Keulenaere, F., Delvigne, E., 2015. Techniques for nutrient recovery from digestate derivatives. www.biorefine.eu/sites/default/files/publication-uploads/wp2a5_gxabt_20151216_recovery_techniques_-_digestate.pdf (accessed 7 May 2019). Berglund, M., Börjesson, P., 2006. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 30, 254–266. doi.org/10.1016/j.biombioe.2005.11.011 Bolzonella, D., Fatone, F., Gottardo, M. and Frison, N., 2018. Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full scale applications. J Environ Manage, 216, pp.111-119. doi: 10.1016/j.jenvman.2017.08.026 CDPQ Decision Tools, 2018. Centre de developpement du porc du Quedec inc. //www.cdpq.ca/outils-d-aide-a-la-decision.aspx (accessed 9 May 2019) Chen, Y.C., Yang, Z.M., Chen, Q.H., Jiang, X.L., Gao, M. and Xia, Q., 2009. An overview on disposal of anaerobic digestate for large scale biogas engineering. China biogas, 28(1), pp.14-20. Chiumenti, A., da Borso, F., Chiumenti, R., Teri, F., Segantin, P., 2013. Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: Tests for process optimization and environmental sustainability. Waste Manag. 33, 1339–1344. doi.org/10.1016/j.wasman.2013.02.023 Cordes, F., 2018. Vacuum evaporation as system provider for flexible biogas plants, in: Progress in the Treatment and Application of Manure and Digestate Products. Presented at the Progress Manure and Digestate 2018, German Biogas and Bioenergy Society (GERBIO), Schwäbisch Hall, Germany. CZBA - Czech Biogas Association, 2014. Strategická výzkumná agenda oboru bioplyn. www.czba.cz/files/ceska-bioplynova-asociace/uploads/files/SVA_CzBA_2014_FINAL.pdf (accessed 7 May 2019). Dahlin, J., Herbes, C. and Nelles, M., 2015. Biogas digestate marketing: Qualitative insights into the supply side. Resour Conserv Recycl, 104, pp.152-161. doi: 10.1016/j.resconrec.2015.08.013 Daniel-Gromke, J., Rensberg, N., Denysenko, V., Trommler, M., Reinholz, T., Völler, K., Beil, M., Beyrich, W., 2017. Anlagenbestand Biogas und Biomethan – Biogaserzeugung und nutzung in Deutschland. DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig. Dasa, K.T., Westman, S.Y., Millati, R., Cahyanto, M.N., Taherzadeh, M.J., Niklasson, C., 2016. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor. BioMed Res. Int. 2016, 1–9. doi.org/10.1155/2016/7263974 Deremince, B., Königsberger, S., 2017. Statistical Report of the European Biogas Association 2017. Brussels, Belgium. european-biogas.eu/wp-content/uploads/2017/12/Statistical-report-of-the-European-Biogas-Association_ excerpt-web.pdf (accessed 14 December 2018). Drosg, B., Fuchs, W., Al Seadi, T., Madsen, M., Linke, B., 2015. Nutrient Recovery by Biogas Digestate Processing. IEA Bioenergy. Đurđević, D., Blecich, P., Lenić, K., 2018. Energy Potential of Digestate Produced by Anaerobic Digestion in Biogas Power Plants: The Case Study of Croatia. Environ. Eng. Sci. 35, 1286–1293. doi.org/10.1089/ees.2018.0123 European Commission, 2018. Energy - Cogeneration of heat and power. ec.europa.eu/energy/en/topics/energy-efficiency/cogeneration-heat-and-power (accessed 21 January 2019). European Commission, 2019a. Horizon 2020, Work Programme 2018-2020. ec.europa.eu/programmes/horizon2020/en/what-work-programme (accessed 10 May 2019). European Commission, 2019b. Renewable energy policy database and support. www.res-legal.eu/search-by-country/finland/single/ (accessed 21 January 2019). Fagerström, A., Seadi, T.A., Rasi, S., Briseid, T., 2018. The role of Anaerobic Digestion and Biogas in the Circular Economy. IEA Bioenergy Task 37 2018 8. Frischmann, P., 2012. Enhancement and treatment of digestates from anaerobic digestion (Desk top study on digestate enchancement and treatment). WRAP. www.wrap.org.uk/content/enhancement-and-treatment-digestates-anaerobic-digestion (accessed 10 May 2019). Fuchs, W., Drosg, B., 2013. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci. Technol. 67, 1984–1993. doi.org/10.2166/wst.2013.075 Gebrezgabher, S., Meuwissen, M., Prins, B. and Lansink, A., 2010. Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands. NJAS - Wageningen Journal of Life Sciences, 57, 109-115. Ghafoori, E., Flynn, P. and Feddes, J., 2007. Pipeline vs. truck transport of beef cattle manure. Biomass Bioenergy, 31, 168-175. doi: 10.1016/j.biombioe.2006.07.007 Golkowska, K., Vázquez-Rowe, I., Lebuf, V., Accoe, F. and Koster, D., 2014. Assessing the treatment costs and the fertilizing value of the output products in digestate treatment systems. Wat Sci Tech, 69(3), pp.656-662. doi: 10.2166/wst.2013.742 Gómez, X., Cuetos, M.J., Cara, J., Morán, A., García, A.I., 2006. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes. Renew. Energy 31, 2017–2024. doi.org/10.1016/j.renene.2005.09.029 Guercini, S., Castelli, G., Rumor, C., 2014. Vacuum evaporation treatment of digestate: full exploitation of cogeneration heat to process the whole digestate production. Wat Sci Tech 70, 479–485. doi.org/10.2166/wst.2014.247 Hung, C.Y., Tsai, W.T., Chen, J.W., Lin, Y.Q. and Chang, Y.M., 2017. Characterization of biochar prepared from biogas digestate. Waste Manage, 66, pp.53-60. doi: 10.1016/j.wasman.2017.04.034 Kirchherr, J., Reike, D., Hekkert, M., 2017. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221–232. doi.org/10.1016/j.resconrec.2017.09.005 Koszel, M. and Lorencowicz, E., 2015. Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. Procedia, 7, pp.119-124. doi.org/10.1016/j.aaspro.2015.12.004 Liguori, R., Faraco, V., 2016. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour. Technol. 215, 13–20. doi.org/10.1016/j.biortech.2016.04.054 Ma, H., Guo, Y., Qin, Y., Li, Y.-Y., 2018. Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion. Bioresour. Technol. 269, 520–531. doi.org/10.1016/j.biortech.2018.08.114 Maier, C., 2018. Vapogant - digestate evaporator, in: Progress in the Treatment and Application of Manure and Digestate Products. Presented at the Progress Manure and Digestate 2018, German Biogas and Bioenergy Society (GERBIO), Schwäbisch Hall, Germany. Máša, V., Bobák, P., Kuba, P., Stehlík, P., 2013. Analysis of energy efficient and environmentally friendly technologies in professional laundry service. Clean Techn Environ Policy 15, 445–457. doi.org/10.1007/s10098-013-0618-2 Melse, R.W., Verdoes, N., 2005. Evaluation of Four Farm-scale Systems for the Treatment of Liquid Pig Manure. Biosyst. Eng. 92, 47–57. doi.org/10.1016/j.biosystemseng.2005.05.004 Miltner, M., Makaruk, A., Harasek, M., 2013. Biomethane-Calculator, IEEE-project BioMethane Regions. bio.methan.at./?q=de/download_biomethane-calculator (accessed 10 May 2019). Møller, H.B., Lund, I., Sommer, S.G., 2000. Solid–liquid separation of livestock slurry: efficiency and cost. Bioresour. Technol. 74, 223–229. doi.org/10.1016/S0960-8524(00)00016-X Møller, H.B., Sommer, S.G., Ahring, B.K., 2002. Separation efficiency and particle size distribution in relation to manure type and storage conditions. Bioresour. Technol. 85, 189–196. doi.org/10.1016/S0960-8524(02)00047-0 Monfet, E., Aubry, G., Ramirez, A.A., 2018. Nutrient removal and recovery from digestate: a review of the technology. Biofuels 9, 247–262. doi.org/10.1080/17597269.2017.1336348 Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., Carrère, H., 2015. New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ. Sci. 8, 2600–2621. doi.org/10.1039/C5EE01633A Noel, V., Fourcroy, J., 2017. Eurovent rating standard for DX air coolers, air cooled condensers, dry coolers: RS 7/C/008 - 2017. Eurovent Certita Certification SAS. www.eurovent-certification.com/fic_bdd/en/1494596601_S02_D04_ECP-HE_2017_RS-7C008.pdf (accessed 18 December 2018) Pablo-Romero, M. del P., Sánchez-Braza, A., Salvador-Ponce, J., Sánchez-Labrador, N., 2017. An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28. Renewable Sustainable Energy Rev. 73, 1366–1379. doi.org/10.1016/j.rser.2017.01.132 Potting, J., Hekkert, M., Worrell, E., Hanemaaijer, A., 2017. Circular Economy: Measuring innovation in the product chain (Policy Report No. 2544). PBL Netherlands Environmental Assessment Agency. www.pbl.nl/sites/default/files/cms/publicaties/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf (accessed 10 May 2019). Ragazzi, M., Maniscalco, M., Torretta, V., Ferronato, N., Rada, E.C., 2017. Anaerobic digestion as sustainable source of energy: A dynamic approach for improving the recovery of organic waste. Energy Procedia 119, 602–614. doi.org/10.1016/j.egypro.2017.07.086 Rehl, T., Müller, J., 2011. Life cycle assessment of biogas digestate processing technologies. Resour. Conserv. Recycl. 56, 92–104. doi.org/10.1016/j.resconrec.2011.08.007 Scarlat, N., Dallemand, J.-F., Fahl, F., 2018. Biogas: Developments and perspectives in Europe. Renew. Energy 129, 457–472. doi.org/10.1016/j.renene.2018.03.006 Tampio, E., Marttinen, S., Rintala, J., 2016. Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J. Clean. Prod. 125, 22–32. doi.org/10.1016/j.jclepro.2016.03.127 Uçkun Kiran, E., Stamatelatou, K., Antonopoulou, G., Lyberatos, G., 2016. Production of biogas via anaerobic digestion, in: Handbook of Biofuels Production. Elsevier, pp. 259–301. doi.org/10.1016/B978-0-08-100455-5.00010-2 van Haeff, J., 2015. The Role of Bio-waste in the Emerging Circular Economy. www.compostnetwork.info/wordpress/wp-content/uploads/John-van-Haeff.pdf (accessed 10 May 2019). Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P.A., Tack, F.M.G., Meers, E., 2017. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valorization 8, 21–40. doi.org/10.1007/s12649-016-9642-x Venkata Mohan, S., Nikhil, G.N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M.V., Kumar, A.N., Sarkar, O., 2016. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 215, 2–12. doi.org/10.1016/j.biortech.2016.03.130 Vilanova Plana, P. and Noche, B. (2016). A review of the current digestate distribution models: storage and transport. Waste Manage 202, pp.345-357. doi: 10.2495/WM160311 Vondra, M., Masa, V., Bobak, P., 2016. The potential for digestate thickening in biogas plants and evaluation of possible evaporation methods. Chem. Eng. Trans. 787–792. doi.org/10.3303/CET1652132 Vondra, M., Máša, V., Bobák, P., 2018a. The energy performance of vacuum evaporators for liquid digestate treatment in biogas plants. Energy, Process Integration for Energy Saving and Pollution Reduction – PRES 2016 146, 141–155. doi.org/10.1016/j.energy.2017.06.135 Vondra, M., Masa, V., Tous, M., Konecna, E., 2018b. Vacuum evaporation of a liquid digestate from anaerobic digestion: a techno-economic assessment. Chem. Eng. Trans. 769–774. doi.org/10.3303/CET1870129. Xia, A. and Murphy, J.D., 2016. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol., 34(4), pp.264-275. doi: 10.1016/j.tibtech.2015.12.010 Zhang, Q., Hu, J., Lee, D.-J., 2016. Biogas from anaerobic digestion processes: Research updates. Renew. Energy 98, 108–119. doi.org/10.1016/j.renene.2016.02.029 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/95770 |