Zolnikov, Pavel and Zubov, Maxim and Nikitinsky, Nikita and Makarov, Ilya (2019): Efficient Algorithms for Constructing Multiplex Networks Embedding. Published in: CEUR Workshop Proceedings , Vol. 2479, (26 September 2019): pp. 57-67.
Preview |
PDF
paper5.pdf Download (425kB) | Preview |
Abstract
Network embedding has become a very promising techniquein analysis of complex networks. It is a method to project nodes of anetwork into a low-dimensional vector space while retaining the structureof the network based on vector similarity. There are many methods ofnetwork embedding developed for traditional single layer networks. Onthe other hand, multilayer networks can provide more information aboutrelationships between nodes. In this paper, we present our random walkbased multilayer network embedding and compare it with single layerand multilayer network embeddings. For this purpose, we used severalclassic datasets usually used in network embedding experiments and alsocollected our own dataset of papers and authors indexed in Scopus.
Item Type: | MPRA Paper |
---|---|
Original Title: | Efficient Algorithms for Constructing Multiplex Networks Embedding |
English Title: | Efficient Algorithms for Constructing Multiplex Networks Embedding |
Language: | English |
Keywords: | Network embedding; Multi-layer network; Machine learning on graphs |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C45 - Neural Networks and Related Topics I - Health, Education, and Welfare > I2 - Education and Research Institutions > I20 - General |
Item ID: | 97310 |
Depositing User: | Dr. Rustam Tagiew |
Date Deposited: | 09 Dec 2019 15:53 |
Last Modified: | 09 Dec 2019 15:53 |
References: | Elsevier, https://dev.elsevier.com Elsevier api library, https://github.com/ElsevierDev/elsapy Manlio de domenico’s personal page, https://comunelab.fbk.eu/manlio/index.php Scopus, https://scopus.com Selenium test automation, https://docs.seleniumhq.org Bacco, C.D., Power, E.A., Larremore, D.B., Moore, C.: Community detec-tion, link prediction, and layer interdependence in multilayer networks. Phys-ical Review E95(4) (Apr 2017). https://doi.org/10.1103/physreve.95.042317,https://doi.org/10.1103/physreve.95.042317 Bagavathi, A., Krishnan, S.: Multi-net: A scalable multiplex network embeddingframework. In: Studies in Computational Intelligence, pp. 119–131. Springer In-ternational Publishing (Dec 2018). https://doi.org/10.1007/978-3-030-05414-410,https://doi.org/10.1007/978-3-030-05414-410 Br ́odka, P., Kazienko, P., Musial, K., Skibicki, K.: Analysis of neighbour-hoods in multi-layered dynamic social networks. CoRRabs/1207.4293(2012),http://arxiv.org/abs/1207.4293 Br ́odka, P., Musial, K., Kazienko, P.: A method for group extraction in complexsocial networks. In: Knowledge Management, Information Systems, E-Learning,and Sustainability Research, pp. 238–247. Springer Berlin Heidelberg (2010).https://doi.org/10.1007/978-3-642-16318-027,https://doi.org/10.1007/978-3-642-16318-027 Br ́odka, P., Skibicki, K., Kazienko, P., Musial, K.: A degree central-ityinmulti-layeredsocialnetwork.CoRRabs/1210.5184(2012),http://arxiv.org/abs/1210.5184 Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-covery and data mining. pp. 855–864. ACM (2016) Guo, Q., Cozzo, E., Zheng, Z., Moreno, Y.: L ́evy random walks on multiplexnetworks. Scientific Reports6(1) (Nov 2016). https://doi.org/10.1038/srep37641,https://doi.org/10.1038/srep37641 Kazienko, P., Brodka, P., Musial, K.: Individual neighbourhood exploration in com-plex multi-layered social network. In: 2010 IEEE/WIC/ACM International Con-ference on Web Intelligence and Intelligent Agent Technology. IEEE (Aug 2010).https://doi.org/10.1109/wi-iat.2010.313, https://doi.org/10.1109/wi-iat.2010.313 Li, J., Chen, C., Tong, H., Liu, H.: Multi-layered network embedding. In: 2018SIAM International Conference on Data Mining (SDM) 2018. pp. 684–692 (1 2018) Liu, W., Chen, P.Y., Yeung, S., Suzumura, T., Chen, L.: Principled multilayer net-work embedding. In: 2017 IEEE International Conference on Data Mining Work-shops (ICDMW). pp. 134–141. IEEE (2017) Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-tations. In: Proceedings of the 20th ACM SIGKDD international conference onKnowledge discovery and data mining. pp. 701–710. ACM (2014) Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-mation network embedding. In: Proceedings of the 24th international conferenceon world wide web. pp. 1067–1077. International World Wide Web ConferencesSteering Committee (2015) Zhang, H., Qiu, L., Yi, L., Song, Y.: Scalable multiplex network embedding. In:Proceedings of the Twenty-Seventh International Joint Conference on Artificial In-telligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. pp. 3082–3088 (2018).https://doi.org/10.24963/ijcai.2018/428, https://doi.org/10.24963/ijcai.2018/428 Zhou, C., Liu, Y., Liu, X., Liu, Z., Gao, J.: Scalable graph embedding for asymmet-ric proximity. In: Thirty-First AAAI Conference on Artificial Intelligence (2017),https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14696 Zitnik, M., Leskovec, J.: Predicting multicellular function through multi-layer tis-sue networks. Bioinformatics33(14), 190–198 (2017) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97310 |