Gourieroux, Christian and Jasiak, Joann (2010): Inference for Noisy Long Run Component Process.
Preview |
PDF
MPRA_paper_98987.pdf Download (639kB) | Preview |
Abstract
This paper introduces a new approach to the modelling of a stationary long run component, which is an autoregressive process with near unit root and small sigma innovation. We show that a combination of a noise and a long run component can explain the long run predictability puzzle pointed out in Fama-French (1988). Moreover in the presence of a long run component, spurious regressions arise and misleading long run predictions are obtained when standard statistical approaches are applied
Item Type: | MPRA Paper |
---|---|
Original Title: | Inference for Noisy Long Run Component Process |
English Title: | Inference for Noisy Long Run Component Process |
Language: | English |
Keywords: | Long Run, Predictability Puzzle, Weak Identification, Deconvolution, Term Structure, Near Unit Root, Small Sigma. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General E - Macroeconomics and Monetary Economics > E0 - General |
Item ID: | 98987 |
Depositing User: | Christian Gourieroux |
Date Deposited: | 12 Mar 2020 01:40 |
Last Modified: | 12 Mar 2020 01:40 |
References: | Bandi, F., and B., Perron (2008) : ”Long Run Risk-Return Trade Offs”, Journal of Econometrics, 143, 349-374. [2] Bandi, F., Perron, B., Tamoni, A., and C., Tebaldi (2018) : ”The Scale of Predictability”, Journal of Econometrics, 208, 120-140. [3] Banon, G. (1978) : ”Nonparametric Identification for Diffusion Processes”, SIAM Journal of Control and Optimization, 16, 380-395. [4] Bansal, R., Dittmar, R., and D., Kiku (2009) : ”Cointegration and Consumption Risk in Equity Returns”, Review of Financial Studies, 22, 13431375. [5] Bansal, R., Kiku, D., and A., Yaron (2007) : ”Risks For the Long Run : Estimation and Inference”, DP Duke Univ. [6] Bansal, R., Kiku, D., and A., Yaron (2010) : ”Long Run Risks, the Macroeconomy and Asset Prices”, American Economic Review, 100, 542546. [7] Bansal, R., Kiku, D., and A., Yaron (2012) : ”Empirical Evaluation of the Long-Run Risks Model for Asset Prices”, Critical Finance Review, 1, 183-221. [8] Bansal, R., and A., Yaron (2004) : ”Risk for the Long Run : A Potential Resolution of Asset Pricing Puzzle”, Journal of Finance, 59, 1481-1509. [9] Barro, R., and G., Liao (2016) : ”Options Pricing Formula with Disaster Risk”, NBER DP 21888. [10] Beeler, J., and J., Campbell (2012) : ”The Long Run Risks Model and Aggregate Asset Prices : An Empirical Assessment”, Critical Finance Review, 1, 141-182. [11] Berkes, I., and M., Weber (2007) : ”On Complete Convergence of Triangular Arrays of Independent Random Variables”, Stat. and Prob. Letters, 77, 952-965. Beveridge, S., and C., Nelson (1981) : ”A New Approach to Decomposition of Economic Time Series into Permanent and Transitory Components with Particular Attention to Measurement of the Business Cycle”, Journal of Monetary Economics, 7, 151-174. [13] Bidder, R., and I., Dew-Becker (2016) : ”Long-Run Risk is the Worst Case Scenario”, American Economic Review, 106, 2494-2527. [14] Bonomo, M., Garcia, R., Meddahi, N., and R., Tedongap (2015) : ”The Long and the Short of the Risk Return Trade-Off”, Journal of Econometrics, 187, 580-592. [15] Bradley, W., and W., Cook (2012) : ”Two Proofs of the Existence and Uniqueness of Partial Fraction Decomposition”, International Mathematical Forum, 7, 1517-1535. [16] Breiman, L. (1996) : ”Bagging Predictors”, Machine Learning, 36, 105139. [17] Calvet, L., and A., Fisher (2007) : ”Multifrequency News and Stock Returns”, Journal of Financial Economics, 86, 178-212. [18] Chan, N., and C., Wei (1987) : ”Asymptotic Inference of Nearly Nonstationary AR(1) Processes”, Annals of Statistics, 15, 1050-1063. [19] Croce, M., Lettau, M., and S., Ludvigson (2014) : ”Investor Information, Long Run Risk and the Term Structure of Equity”, Review of Financial Studies, 28, 706-742. [20] Davidson, J. (1994) : ”Stochastic Limit Theory”, Oxford Univ. Press. [21] Deng, A. (2014) : ”Understanding Spurious Regressions in Financial Economics”, Journal of Financial Econometrics, 12, 122-150. [22] Efron, B. (2014) : ”Estimation and Accuracy After Model Selection”, Journal of the American Statistical Association, 109, 991-1007. [23] Epstein, L., Farhi, E., and T., Strzalecki (2017) : ”How Much Would You Pay to Resolve Long Run Risk”, American Economic Review, 104, 2680-2697. Fama, E., and K., French (1988)a : ”Permanent and Temporary Components of Stock Prices”, Journal of Political Economy, 96, 246-275. [25] Fama, E., and K., French (1988)b : ”Dividend Yields and Expected Stock Returns”, Journal of Financial Economics, 25, 23-49. [26] Fama, E., and K., French (1989) : ”Business Conditions and Expected Returns on Stocks and Bonds”, Journal of Financial Economics, 25, 23-49. [27] Ferson, W., Sarkissian, S., and T., Simon (2003) : ”Is Stock Return Predictability Spurious?”, Journal of Investment Management, 1, 1-10. [28] Gollier, C. (2016) : ”Evaluation of Long Dated Assets : The Role of Parameter Uncertainty”, Journal of Monetary Economics, 84, 66-89. [29] Gospodinov, N. (2009) : ”A New Look at the Forward Premium Puzzle”, Journal of Financial Econometrics, 7, 312-338. [30] Gospodinov, N., Maynard, A., and E., Pesavento (2017) : ”Conditional Inference in Nearly Cointegrated Vector Error Correction Models and Small Signal-to-Noise Ratio”, Fed. Reserve Atlanta, DP. [31] Friedman, M. (1957) : ”The Permanent Income Hypothesis : A Theory of the Consumption Function”, Princeton University Press. [32] Gourieroux, C., and J., Jasiak (2019) : ”Dynamic Deconvolution of Independent Autoregressive Sources”, CREST-DP. [33] Gourieroux, C., and A., Monfort (1997) : ”Time Series and Dynamic Models”, Cambridge Univ. Press. [34] Gourieroux, C., Monfort, A., Mouabbi, S., and J.P., Renne (2019) : ”Disastrous Defaults”, CREST DP. [35] Gourieroux, C., Monfort, A., and J.P., Renne (2019) : ”A New Modelling of Ultra Long Run Risk, with Application to the Term Structure of Interest Rates ”, CREST-DP. [36] Grammig, J., and E.M., Kuchlin (2018) : ”A Two-Step Indirect Inference Approach to Estimate the Long-Run Risk Asset Pricing Model”, Journal of Econometrics, 205, 6-33. 31 Granger, C., and P., Newbold (1974) : ”Spurious Regressions in Econometrics”, Journal of Econometrics, 74, 111-120. [38] Hansen, L., Heaton, J., and N., Li (2008) : ”Consumption Strikes Back ? Measuring Long Run Risk”, Journal of Political Economy, 116, 260-302. [39] Hansen, L., and T., Sargent (2010) : ”Fragile Beliefs and the Price of Uncertainty”, Quantitative Economics, 1, 129-162. [40] Hansen, L., and J., Scheinkman (2012) : ”Pricing Growth Rate Risk”, Finance and Stochastics, 16, 1-15. [41] Hirano, K., and J., Wright (2017) : ”Forecasting with Model Uncertainty : Representations and Risk Reduction”, Econometrica, 85, 617-643. [42] Hirano, K., and J., Wright (2019) : ”Analyzing Cross-Validation for Forecasting with Structural Instability”, Penn. State Univ. DP. [43] Hjalmarsson, E. (2008) : ”Inference in Long Horizon Regression”, DP 853, Board of Governors of the Federal Reserve System. [44] Hjalmarsson, E. (2011) : ”New Methods for Inference in Long-Horizon Regressions”, Journal of Financial and Quantitative Analysis 46, 815-839. [45] Jiang, G., and J., Knight (1997) : ”A Nonparametric Approach to the Estimation of Diffusion Processes, with an Application to a Short Term Interest Rate Model”, Econometric Theory, 13, 615-645. [46] Kadane, J. (1971) : ”Comparison of k-Class Estimators when the Disturbances are Small”, Econometrica, 39, 729-737. [47] Magdalinos, T., and P., Phillips (2007) : ”Limit Theory for Moderate Deviations from Unity”, Journal of Econometrics, 136, 115-130. [48] Malloy, C., Moskowitz, T., and A., Vissing-Jorgensen (2009) : ”LongRun Stockholder Consumption Risk and Asset Returns”, Journal of Finance, 6, 2427-2479. [49] Maravall, A. (1979) : ”Identification in Dynamic Shock-Error Model”, Lecture Notes in Econometrics and Mathematical Systems, 165, Springer. Moon, R., Rubia, R., and R., Valkanov (2004) : ”Long Horizon Regressions when the Predictor is Slowly Varying”, DP Univ. Southern California. [51] Nabeya, S., and P., Perron (1994) : ”Local Asymptotic Distribution Related to the AR(1) Model with Dependent Errors”, Journal of Econometrics, 62, 229-264. [52] Ng, S., and P., Perron (1997) : ”Estimation and Inference in Nearly Unbalanced Nearly Cointegrated Systems”, Journal of Econometrics, 79, 53-81. [53] Ortu, F., Tamoni, A., and C., Tebaldi (2013) : ”Long Run Risk and the Persistence of Consumption Shocks”, Review of Financial Studies, 26, 2876-2915. [54] Phillips, P. (1979) : ”The Sampling Distribution of Forecasts from a First-Order Autoregression”, Journal of Econometrics, 9, 241-261. [55] Phillips, P. (1986) : ”Understanding Spurious Regressions in Econometrics”, Journal of Econometrics, 33, 311-340. [56] Phillips, P. (1987) : ”Towards a Unified Asymptotic Theory for Autoregression”, Biometrika, 74, 535-547. [57] Phillips, P., (1998) : ”New Tools for Understanding Spurious Regressions”, Econometrica, 66, 1299-1326. [58] Pohl, W., Schmedders, K., and O., Wilms (2018) : ”Asset Pricing with Heterogenous Agents and Long-Run Risk”, DP Tilburg Univ. [59] Poirier, D. (1998) : ”Revising Beliefs in Nonidentified Models”, Econometric Theory, 14, 483-509. [60] Roussas, G., and D., Bhattacharya (2011) : ”Revisiting Local Asymptotic Normality (LAN) and Passing on to Local Asymptotic Mixed Normality (LAMN) and Local Asymptotic Quadratic (LAQ) Experiments”, in Advances in Directional and Linear Statistics, M., Wells, and A., Sengupta, eds., 253-280, Physica-Verlag, Springer, Heidelberg. Schorfheide, F., Song, D., and A., Yaron (2018) : ”Identifying LongRun Risks : A Bayesian Mixed-Frequency Approach”, Econometrica, 86, 617-654. [62] Shephard, N., and A., Harvey (1990) : ”On the Probability of Estimating a Deterministic Component in the Local Level Model”, Journal of Time Series Analysis, 11, 339-347. [63] Stambaugh, R. (1999) : ”Predictive Regressions”, Journal of Financial Economics, 54, 375-421. [64] Torous, W., and R., Valkanov (2000) : ”Boundaries of Predictability: Noisy Predictive Regressions”, DP UCLA. [65] Valkanov, R. (2003) : ”Long Horizon Regressions : Theoretical Results and Applications”, The Journal of Financial Economics, 68, 201-232. [66] Vasicek, O. (1977) : ”An Equilibrium Characterization of the Term Structure”, Journal of Financial Economics, 5, 177-184. [67] Wachter, J. (2013) : ”Can Time Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility ?, Journal of Finance, 68, 987-1035. [68] Yule, G. (1926) : ”Why Do We Sometimes Get Nonsense-Correlations Between Time Series ? A Study in Sampling and the Nature of Time Series”, Presidential Address, Journal of Royal Statistical Society, 89, 169 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/98987 |