Maulana, Ardian and Situngkir, Hokky (2020): Divided Information Space: Media Polarization on Twitter during 2019 Indonesian Election.
Preview |
PDF
MPRA_paper_101957.pdf Download (1MB) | Preview |
Abstract
Nowadays, the understanding of the impact of social media and online news media on the emergence of extreme polarization in political discourse is one of the most pressing challenges for both science and society. In this study, we investigate the phenomenon of political polarization in the indonesian news media network based on the pattern of news consumption patterns of Twitter users during 2019 Indonesian elections. By modeling news consumption patterns as a bipartite network of news outletsTwitter user, and then projecting to a network of news outlets, we observed the emergence of a number of media communites based on audience similarity. By measuring the political alignments of each news outlet, we shows the politically fragmented Indonesian news media landscape, where each media community becomes an political echo chamber for its audience. Our finding highlight the important role of mainstream media as a bridge of information between political echo chamber in social media environment
Item Type: | MPRA Paper |
---|---|
Original Title: | Divided Information Space: Media Polarization on Twitter during 2019 Indonesian Election |
English Title: | Divided Information Space: Media Polarization on Twitter during 2019 Indonesian Election |
Language: | English |
Keywords: | network, news media network, echo-chamber, twitter, community detection, news consumption |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C00 - General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C10 - General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C60 - General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling C - Mathematical and Quantitative Methods > C9 - Design of Experiments > C90 - General D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D80 - General D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D85 - Network Formation and Analysis: Theory |
Item ID: | 101957 |
Depositing User: | Ardian Maulana |
Date Deposited: | 23 Jul 2020 02:03 |
Last Modified: | 23 Jul 2020 02:03 |
References: | [1] World Economic Forum, “Digital Wildfires in a Hyperconnected World,” Global Risks, 2013. [2] N. Nic, D. A. L. Levy, and R. K. Nielsen, “Reuters Institute Digital News Report 2018,” Reuters Inst. Digit.News, 2018, doi: 10.1017/CBO9781107415324.004. [3] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of social networks in information diffusion,” 2012,doi: 10.1145/2187836.2187907. [4] E. Pariser, The Filter Bubble: What the Internet Is Hiding from You. London: Penguin Press, 2011. [5] S. Kull, C. Ramsay, and E. Lewis, “Misperceptions, the Media, and the Iraq War,” Political Science Quarterly.2003, doi: 10.1002/j.1538-165X.2003.tb00406.x. [6] N. J. Stroud, “Media use and political predispositions: Revisiting the concept of selective exposure,” Polit. Behav., 2008, doi: 10.1007/s11109-007-9050-9. [7] W. Quattrociocchi, A. Scala, and C. R. Sunstein, “Echo Chambers on Facebook,” SSRN Electron. J., 2018, doi: 10.2139/ssrn.2795110. [8] A. Bessi, F. Zollo, M. Del Vicario, A. Scala, G. Caldarelli, and W. Quattrociocchi, “Trend of narratives in the age of misinformation,” PLoS One, 2015, doi: 10.1371/journal.pone.0134641. [9] A. Bessi et al., “Viral misinformation: The role of homophily and polarization,” 2015, doi: 10.1145/2740908.2745939. [10] M. Del Vicario et al., “The spreading of misinformation online,” Proc. Natl. Acad. Sci. U. S. A., 2016, doi: 10.1073/pnas.1517441113. [11] M. Del Vicario et al., “Echo Chambers: Emotional Contagion and Group Polarization on Facebook,” Sci. Rep., 2016, doi: 10.1038/srep37825. [12] M. Conover, J. Ratkiewicz, and M. Francisco, “Political polarization on twitter.,” Icwsm, 2011, doi: 10.1021/ja202932e. [13] T. Groeling, “Media Bias by the Numbers: Challenges and Opportunities in the Empirical Study of Partisan News,” Annu. Rev. Polit. Sci., 2013, doi: 10.1146/annurev-polisci-040811-115123. [14] E. Borra and B. Rieder, “Programmed method: Developing a toolset for capturing and analyzing tweets,” Aslib J. Inf. Manag., 2014, doi: 10.1108/AJIM-09-2013-0094. [15] M. Tumminello, S. Miccichè, F. Lillo, J. Piilo, and R. N. Mantegna, “Statistically validated networks in bipartite complex systems,” PLoS One, 2011, doi: 10.1371/journal.pone.0017994. [16] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,” J. R. Stat. Soc. Ser. B, 1995, doi: 10.1111/j.2517-6161.1995.tb02031.x. [17] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large networks,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 2004, doi: 10.1103/PhysRevE.70.066111. [18] P. Pons and M. Latapy, “Computing communities in large networks using random walks,” J. Graph Algorithms Appl., 2006, doi: 10.7155/jgaa.00124. [19] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” J. Am. Stat. Assoc., 1971, doi: 10.1080/01621459.1971.10482356. [20] A. Maulana and H. Situngkir, “Media Partisanship during Election: Indonesian Cases,” 2020. [21] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect community structures in large-scale networks,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2007, doi: 10.1103/PhysRevE.76.036106. [22] A. Badawy, E. Ferrara, and K. Lerman, “Analyzing the digital traces of political manipulation: The 2016 Russian interference Twitter campaign,” 2018, doi: 10.1109/ASONAM.2018.8508646. [23] C. R. Sunstein, #Republic: Divided Democracy in the Age of Social MediaTitle. Princeton: Princeton University Press, 2017. [24] J. G. Webster and T. B. Ksiazek, “The Dynamics of Audience Fragmentation: Public Attention in an Age of Digital Media,” J. Commun., 2012, doi: 10.1111/j.1460-2466.2011.01616.x. [25] A. Internet, “Keyword Research, Competitor Analysis RESEARCH & Website Ranking,” 2019. . [26] A. L. Schmidt et al., “Anatomy of news consumption on Facebook,” Proc. Natl. Acad. Sci. U. S. A., 2017, doi: 10.1073/pnas.1617052114. [27] M. Del Vicario, S. Gaito, W. Quattrociocchi, M. Zignani, and F. Zollo, “News consumption during the Italian referendum: A cross-platform analysis on facebook and twitter,” 2017, doi: 10.1109/DSAA.2017.33. [28] E. Bakshy, S. Messing, and L. A. Adamic, “Exposure to ideologically diverse news and opinion on Facebook,” Science (80-. )., 2015, doi: 10.1126/science.aaa1160. [29] R. Guimerà and L. A. N. Amaral, “Functional cartography of complex metabolic networks,” Nature, 2005, doi: 10.1038/nature03288. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/101957 |