Fries, Sébastien (2018): Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_105770.pdf Download (1MB) | Preview |
Abstract
Noncausal, or anticipative, heavy-tailed processes generate trajectories featuring locally explosive episodes akin to speculative bubbles in financial time series data. For $(X_t)$ a two-sided infinite $\alpha$-stable moving average (MA), conditional moments up to integer order four are shown to exist provided $(X_t)$ is anticipative enough, despite the process featuring infinite marginal variance. Formulae of these moments at any forecast horizon under any admissible parameterisation are provided. Under the assumption of errors with regularly varying tails, closed-form formulae of the predictive distribution during explosive bubble episodes are obtained and expressions of the ex ante crash odds at any horizon are available. It is found that the noncausal autoregression of order 1 (AR(1)) with AR coefficient $\rho$ and tail exponent $\alpha$ generates bubbles whose survival distributions are geometric with parameter $\rho^{\alpha}$. This property extends to bubbles with arbitrarily-shaped collapse after the peak, provided the inflation phase is noncausal AR(1)-like. It appears that mixed causal-noncausal processes generate explosive episodes with dynamics \textit{à la} Blanchard and Watson (1982) which could reconcile rational bubbles with tail exponents greater than 1. Applications of the conditional moments to bubble modelling by noncausal processes are discussed and the use of the closed-form crash odds is illustrated on the Nasdaq and S\&P500 series.
Item Type: | MPRA Paper |
---|---|
Original Title: | Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds |
Language: | English |
Keywords: | Noncausal process, Speculative bubble, Crashes, Prediction, Rational expectation, Conditional moments, Multivariate stable distributions |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 105770 |
Depositing User: | Sébastien Fries |
Date Deposited: | 08 Feb 2021 11:09 |
Last Modified: | 08 Feb 2021 11:09 |
References: | Andrews, B., Calder, M., and R., Davis. 2009. Maximum likelihood estimation forα-stable autoregressive process. Annals of Statistics, 37, 1946-1982. Bec, F., Nielsen, H. B., and S., Saïdi. 2020. Mixed causal-noncausal autoregressions: bimodality issues in estimation andunit root testing. Forthcoming in Oxford Bulletin of Economics and Statistics. Blanchard, O. and M., Watson. 1982. Bubbles, rational expectations, and financial markets. National Bureau of Economic Research, No. 0945. Blasques, F., Koopman, S. J., and M., Nientker. 2018. A time-varying parameter model for local explosions. Tinbergen Institute Discussion Paper, No. TI 2018-088/III. Cambanis, S., and G., Miller. 1981. Linear problems in pth order and stable processes. SIAM Journal on Applied Mathematics, 41, 43–69. Cavaliere, G., Nielsen, H.B, and A. Rahbek. 2020. Bootstrapping non-causal autoregressions: with applications to explosive bubble modelling.Journal of Business and Economic Statistics, 38, 55-67. Chen, B., Choi, J., and J. C., Escanciano. 2017. Testing for fundamental vector moving average representations. Quantitative Economics, 8, 149-180. Cioczek-Georges, R., and M. S., Taqqu. 1995a. Form of the conditional variance for stable random variables. Statistica Sinica, 351-361. Cioczek-Georges, R., and M. S., Taqqu. 1995b. Necessary conditions for the existence of conditional moments of stable random variables. Stochastic Processes and their Applications, 56, 233-24. Cioczek-Georges, R., and M. S., Taqqu. 1998. Sufficient conditions for the existence of conditional moments of stable random variables. Stochastic Processes and Related Topics, Birkhäuser Boston, 35-67. Conway, J. B. 1978. Functions of one complex variable. Springer-Verlag, New York. Fries, S. 2018. Path prediction of aggregated α-stable moving averages using semi-norm representations. ArXiv preprint arXiv:1809.03631. Fries, S., and J.-M., Zakoian. 2019. Mixed causal-noncausal AR processes and the modelling of explosive bubbles. Econom-etric Theory, 35, 1234-1270. Gouriéroux, C., Hencic, A., and J., Jasiak. 2019. Forecast performance and bubble analysis in noncausal MAR(1,1) pro-cesses. Toulouse School of Economics. 10.13140/RG.2.2.25135.38568. Gouriéroux, C., and J., Jasiak. 2016. Filtering, prediction and simulation methods for noncausal processes. Journal ofTime Series Analysis, 37, 405-430. Gouriéroux, C., and J., Jasiak. 2018. Misspecification of noncausal order in autoregressive processes. Journal of Econometrics, 205, 226-248. Gouriéroux, C., Jasiak, J. and A., Monfort. 2020. Stationary bubble equilibria in rational expectation models. Forthcoming in Journal of Econometrics. Gouriéroux, C. and J.-M., Zakoian. 2017. Local explosion modelling by non-causal process. Journal of the Royal Statistical Society: Series B. 79, 737-756. Hansen, B. E. 2008. Uniform convergence rates for kernel estimation with dependent data. Econometric Theory, 726-748. Hardin Jr, C. D., Samorodnitsky, G., and M. S., Taqqu. 1991. Nonlinear regression of stable random variables. The Annals of Applied Probability, 582-612. Hecq, A., and L., Sun. 2019. Identification of noncausal models by quantile autoregressions. arXiv preprint arXiv:1904.05952. Hecq, A., Lieb, L., and S. M., Telg. 2016. Identification of mixed causal-noncausal models in finite samples. Annals of Economics and Statistics, 123/124, 307-331. Hecq, A., Telg, S., and L., Lieb. 2017. Do seasonal adjustments induce noncausal dynamics in inflation rates? Econometrics, 5, 48. Hecq, A., Telg, S., and L, Lieb. 2017. Simulation, estimation and selection of mixed causal-noncausal autoregressive models : the MARX package. Available at SSRN: https://ssrn.com/abstract=3015797. Hecq, A., and E., Voisin. 2020. Forecasting bubbles with mixed causal-noncausal autoregressive models. Forthcoming in Econometrics and Statistics. Hencic, A., and C., Gouriéroux. 2015. Noncausal autoregressive model in application to Bitcoin/USD exchange rates. Econometrics of Risk, Springer International Publishing, 17-40. Jondeau, E., and M., Rockinger. 2006. Optimal portfolio allocation under higher moments. European Financial Manage-ment, 12, 29-55. Jondeau, E., and M., Rockinger. 2012. On the importance of time variability in higher moments for asset allocation. Journal of Financial Econometrics, 10, 84-123. Karcher, W., Shmileva, E., and E., Spodarev. 2013. Extrapolation of stable random fields. Journal of Multivariate Analysis,115, 516-536. Lanne, M., Luoto, J., and P., Saikkonen. 2012. Optimal forecasting of noncausal autoregressive time series. International Journal of Forecasting, 28, 623-631. Lanne, M., Nyberg, H., and E., Saarinen. 2012. Does noncausality help in forecasting economic time series? Economics Bulletin, 32, 2849-2859. Lanne, M., and P., Saikkonen. 2011. Noncausal autogressions for economic time series. Journal of Time Series Econometrics,3. Lanne, M., and P., Saikkonen. 2013. Noncausal vector autoregression. Econometric Theory, 29, 447-481. Ling, S. 2007. A double AR (p) model: structure and estimation. Statistica Sinica, 17, 161-175. Lux, T., and D., Sornette. 2002. On rational bubbles and fat tails. Journal of Money, Credit and Banking, 589-610. Matsushima, H. 2003. Behavioral aspects of arbitrageurs in timing games of bubbles and crashes. Journal of Economic Theory, 148, 858-870. Miller, G. 1978. Properties of certain symmetric stable distributions.Journal of Multivariate Analysis, 8, 346–36. Phillips, P. C., and S. P., Shi. 2018. Financial bubble implosion and reverse regression. Econometric Theory, 34, 705-753. Phillips, P. C., Shi, S., and J., Yu. 2015. Testing for multiple bubbles: historical episodes of exuberance and collapse in the S&P 500. International Economic Review, 56, 1043-1078. Phillips, P. C., Wu, Y., and J., Yu. 2011. Explosive behavior in the 1990s Nasdaq: when did exuberance escalate assetvalues?International Economic Review, 52, 201-226. Royuela-del-Val J., Simmross-Wattenberg F., and C. Alberola López. 2017. libstable: fast, parallel and high-precision computation of alpha-stable distributions in R, C/C++ and MATLAB.Journal of Statistical Software, 78, 1-25. Samorodnitsky, G., and M. S., Taqqu. 1994.Stable non-Gaussian random processes, Chapman & Hall, London, 516-536. West, K. D. 1987. A specification test for speculative bubbles.The Quarterly Journal of Economics, 102, 553-58. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/105770 |
Available Versions of this Item
-
Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds. (deposited 04 Dec 2019 14:16)
- Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds. (deposited 08 Feb 2021 11:09) [Currently Displayed]