Quartieri, Federico (2021): Existence of maximals via right traces.
Preview |
PDF
MPRA_paper_107189.pdf Download (251kB) | Preview |
Abstract
This paper examines the conditions for the existence of a maximal element of a relation on every nonempty compact subset of its ground set. A preliminary analysis establishes some connections between the maximals of a relation and those of its right trace. Via this analysis, various results of the literature are unified by identifying a common property of their assumptions that concerns the right trace of the transitive closure of the objective relation. Next, a generalization is provided so as to accommodate some relations of interest to economics. Finally, a necessary and sufficient condition is presented for the existence of a maximal on every nonempty compact subset of the ground set of a relation.
Item Type: | MPRA Paper |
---|---|
Original Title: | Existence of maximals via right traces |
Language: | English |
Keywords: | Maximal element; Existence; Right trace; Transitive closure; Suzumura-consistency. |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C60 - General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis D - Microeconomics > D1 - Household Behavior and Family Economics > D11 - Consumer Economics: Theory |
Item ID: | 107189 |
Depositing User: | Federico Quartieri |
Date Deposited: | 19 Apr 2021 14:55 |
Last Modified: | 19 Apr 2021 14:55 |
References: | Alcantud, J. C. R., 2002. Characterization of the existence of maximal elements of acyclic relations. Economic Theory 19 (2), 407-416. Alcantud, J. C. R., Bosi, G., Zuanon, M., 2010. A selection of maximal elements under non-transitive indifferences. Journal of Mathematical Psychology 54 (6), 481-484. Aleskerov, F., Bouyssou, D., Monjardet, B., 2007. Utility Maximization, Choice and Preference, 2nd Edition. Springer. Aliprantis, C. D., Brown, D. J., 1983. Equilibria in markets with a Riesz space of commodities. Journal of Mathematical Economics 11 (2), 189-207. Andrikopoulos, A., Zacharias, E., 2012. A topological characterization of the existence of non-empty choice sets. Topology and its Applications 159 (7), 1987-1992. Banks, J. S., Duggan, J., Le Breton, M., 2006. Social choice and electoral competition in the general spatial model. Journal of Economic Theory 126 (1), 194-234. Bergstrom, T., 1992. When non-transitive relations take maxima and competitive equilibrium canít be beat. In: Economic Theory and International Trade. Springer, pp. 29-52. Bergstrom, T. C., 1975. Maximal elements of acyclic relations on compact sets.Journal of Economic Theory 10, 403-404. Birkhoff, G., 1948. Lattice Theory, Rev. Edition. Vol. 25. American Mathematical Society. Border, K. C., 1985. Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press. Bosi, G., Zuanon, M., 2019. Upper semicontinuous representability of maximal elements for nontransitive preferences. Journal of Optimization Theory and Applications 181 (3), 758-765. Bosi, G., Zuanon, M. E., 2017. Maximal elements of quasi upper semicontinuous preorders on compact spaces. Economic Theory Bulletin 5 (1), 109-117. Bossert, W., 2008. Suzumura consistency. In: Rational Choice and Social Welfare. Springer, pp. 159-179. Bossert, W., 2018. Suzumura-consistent relations: An overview. International Journal of Economic Theory 14 (1), 21-34. Bouyssou, D., Doignon, J.-P., 2020. Chain representations of nested families of biorders. In: Mathematical Topics on Representations of Ordered Structures and Utility Theory. Springer, pp. 143-169. Bouyssou, D., Marchant, T., 2011. Biorders with frontier. Order 28 (1), 53-87. Brown, D., 1973. Acyclic choice, Cowles Foundation Discussion Paper No. 360. Tech. rep., Yale University. Campbell, D. E., Walker, M., 1990. Maximal elements of weakly continuous relations. Journal of Economic Theory 50 (2), 459-464. Cerreia-Vioglio, S., Ok, E. A., 2018. The rational core of preference relations. Tech. rep., Bocconi University. URL http://didattica.unibocconi.it/mypage/dwload.php?nomefile=RatCore20180911202044.pdf Doignon, J.-P., Monjardet, B., Roubens, M., Vincke, P., 1986. Biorder families, valued relations, and preference modelling. Journal of Mathematical Psychology 30 (4), 435-480. Duggan, J., 1999. A general extension theorem for binary relations. Journal of Economic Theory 86 (1), 1-16. Duggan, J., 2011. General conditions for the existence of maximal elements via the uncovered set. Journal of Mathematical Economics 47 (6), 755-759. Duggan, J., 2013. Uncovered sets. Social Choice and Welfare 41 (3), 489-535. Evren, Ö., Ok, E. A., 2011. On the multi-utility representation of preference relations. Journal of Mathematical Economics 47 (4-5), 554-563. Kukushkin, N. S., 2008. Maximizing an interval order on compact subsets of its domain. Mathematical Social Sciences 56 (2), 195-206. Luc, D. T., 1989. Theory of Vector Optimization. Springer. Luc, D. T., Soubeyran, A., 2013. Variable preference relations: Existence of maximal elements. Journal of Mathematical Economics 49 (4), 251-262. Luce, R. D., 1956. Semiorders and a theory of utility discrimination. Econometrica 24 (2), 178-191. Luce, R. D., 1958. A probabilistic theory of utility. Econometrica 26 (2), 193-224. Mehta, G., 1984. Maximal elements for non-transitive binary relations. Economics Letters 14 (2-3), 163-165. Mehta, G., 1987. Weakly lower demicontinuous preference maps. Economics Letters 23 (1), 15-18. Mehta, G., 1989. Maximal elements in Banach spaces. Indian Journal of Pure and Applied Mathematics 20 (7), 690-697. Nosratabadi, H., 2014. Partially upper continuous preferences: Representation and maximal elements. Economics Letters 125 (3), 408-410. Peris, J. E., Subiza, B., 2002. Choosing among maximals. Journal of Mathematical Psychology 46 (1), 1-11. Rader, T., 1972. Theory of Microeconomics. Academic Press. Rodríguez-Palmero, C., Garcìa-Lapresta, J.-L., 2002. Maximal elements for irreflexive binary relations on compact sets. Mathematical Social Sciences 43 (1), 55-60. Schmeidler, D., 1969. Competitive equilibria in markets with a continuum of traders and incomplete preferences. Econometrica 37 (4), 578-585. Schouten, W., 2018. The Riesz-Kantorovich formula for lexicographically ordered spaces. Positivity 22 (2), 609-627. Sloss, J., 1971. Stable points of directional preference relations, Technical Report No. 71-7. Tech. rep., Stanford University. Smith, T. E., 1974. On the existence of most-preferred alternatives. International Economic Review, 184-194. Sonnenschein, H., 1971. Demand theory without transitive preferences, with applications to the theory of competitive equilibrium. Preferences, Utility, and Demand: A Minnesota Symposium, 215-223. Subiza, B., Peris, J. E., 1997. Numerical representation for lower quasicontinuous preferences. Mathematical Social Sciences 33 (2), 149-156. Suzumura, K., 1976. Remarks on the theory of collective choice. Economica 43 (172), 381-390. Tian, G., Zhou, J., 1995. Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization. Journal of Mathematical Economics 24 (3), 281-303. Walker, M., 1977. On the existence of maximal elements. Journal of Economic Theory 16 (2), 470-474. Wallace, A. D., 1945. A fixed-point theorem. Bulletin of the American Mathematical Society 51 (6), 413-416. Wallace, A. D., 1962. Relations on topological spaces. In: General Topology and Its Relations to Modern Analysis and Algebra: Proceedings of the Symposium Held in Prague in September 1961. Academia Publishing House of the Czechoslovak Academy of Sciences, pp. 356-360. Ward, L., 1954. Partially ordered topological spaces. Proceedings of the American Mathematical Society 5 (1), 144-161. Yannelis, N. C., 1985. Maximal elements over non-compact subsets of linear topological spaces. Economics Letters 17 (1-2), 133-136. Yannelis, N. C., Prabhakar, N., 1983. Existence of maximal elements and equilibria in linear topological spaces. Journal of Mathematical Economics 12 (3), 233-245. Zhou, J., Tian, G., 1992. Transfer method for characterizing the existence of maximal elements of binary relations on compact or noncompact sets. SIAM Journal on Optimization 2 (3), 360-375. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/107189 |