Pötscher, Benedikt M. and Preinerstorfer, David (2021): Valid Heteroskedasticity Robust Testing.
There is a more recent version of this item available. 

PDF
MPRA_paper_107420.pdf Download (1MB)  Preview 
Abstract
Tests based on heteroskedasticity robust standard errors are an important technique in econometric practice. Choosing the right critical value, however, is not all that simple: Conventional critical values based on asymptotics often lead to severe size distortions; and so do existing adjustments including the bootstrap. To avoid these issues, we suggest to use smallest sizecontrolling critical values, the generic existence of which we prove in this article. Furthermore, sufficient and often also necessary conditions for their existence are given that are easy to check. Granted their existence, these critical values are the canonical choice: larger critical values result in unnecessary power loss, whereas smaller critical values lead to overrejections under the null hypothesis, make spurious discoveries more likely, and thus are invalid. We suggest algorithms to numerically determine the proposed critical values and provide implementations in accompanying software. Finally, we numerically study the behavior of the proposed testing procedures, including their power properties.
Item Type:  MPRA Paper 

Original Title:  Valid Heteroskedasticity Robust Testing 
Language:  English 
Keywords:  Heteroskedasticity, Robustness, Tests, Size of a test 
Subjects:  C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C12  Hypothesis Testing: General C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C14  Semiparametric and Nonparametric Methods: General C  Mathematical and Quantitative Methods > C2  Single Equation Models ; Single Variables > C20  General 
Item ID:  107420 
Depositing User:  Benedikt Poetscher 
Date Deposited:  30 Apr 2021 16:35 
Last Modified:  30 Apr 2021 16:36 
References:  Bakirov, N. and Székely, G. (2005). Student's ttest for Gaussian scale mixtures. Zapiski Nauchnyh Seminarov POMI, 328 519. Bakirov, N. K. (1998). Nonhomogeneous samples in the BehrensFisher problem. J. Math. Sci. (New York), 89 14601467. Bell, R. M. and McCaffrey, D. (2002). Bias reduction in standard errors for linear regression with multistage samples. Survey Methodology, 28 169181. Belloni, A. and Didier, G. (2008). On the BehrensFisher problem: a globally convergent algorithm and a finitesample study of the Wald, LR and LM tests. Ann. Statist., 36 2377 2408. Chesher, A. and Jewitt, I. (1987). The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica, 55 12171222. Chesher, A. D. (1989). Hájek inequalities, measures of leverage, and the size of heteroskedasticity robust Wald tests. Econometrica, 57 971977. Chesher, A. D. and Austin, G. (1991). The finitesample distributions of heteroskedasticity robust Wald statistics. Journal of Econometrics, 47 153173. Cragg, J. G. (1983). More efficient estimation in the presence of heteroscedasticity of unknown form. Econometrica, 51 751763. Cragg, J. G. (1992). QuasiAitken estimation for heteroscedasticity of unknown form. Journal of Econometrics, 54 179201. CribariNeto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 45 215233. Davidson, R. and Flachaire, E. (2008). The wild bootstrap, tamed at last. Journal of Econometrics, 146 162169. Davidson, R. and MacKinnon, J. G. (1985). Heteroskedasticityrobust tests in regressions directions. Ann. I.N.S.É.É. 183218. Davies, R. B. (1980). Algorithm AS 155: The distribution of a linear combination of chi2 random variables. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29 323333. DiCiccio, C. J., Romano, J. P. and Wolf, M. (2019). Improving weighted least squares inference. Econometrics and Statistics, 10 96119. Duchesne, P. and de Micheaux, P. L. (2010). Computing the distribution of quadratic forms: Further comparisons between the LiuTangZhang approximation and exact methods. Computational Statistics and Data Analysis, 54 858862. Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Annals of Mathematical Statistics, 34 447456. Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66). Univ.California Press, Berkeley, Calif., Vol. I: Statistics, pp. 5982. Flachaire, E. (2005). More e¢ cient tests robust to heteroskedasticity of unknown form. Econometric Reviews, 24 219241. Godfrey, L. G. (2006). Tests for regression models with heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 50 27152733. Hinkley, D. V. (1977). Jackknifing in unbalanced situations. Technometrics, 19 285292. Ibragimov, R. and Müller, U. K. (2010). tstatistic based correlation and heterogeneity robust inference. Journal of Business and Economic Statistics, 28 453468. Ibragimov, R. and Müller, U. K. (2016). Inference with few heterogeneous clusters. The Review of Economics and Statistics, 98 8396. Imbens, G. W. and Kolesár, M. (2016). Robust standard errors in small samples: Some practical advice. The Review of Economics and Statistics, 98 701712. Kim, S.H. and Cohen, A. S. (1998). On the BehrensFisher problem: A review. Journal of Educational and Behavioral Statistics, 23 356377. Kolesár, M. (2019). dfadjust: Degrees of Freedom Adjustment for Robust Standard Errors. R package version 1.0.1, URL https://CRAN.Rproject.org/package=dfadjust. Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses. 3rd ed. Springer Texts in Statistics, Springer, New York. Lin, E. S. and Chou, T.S. (2018). Finitesample refinement of GMM approach to nonlinear models under heteroskedasticity of unknown form. Econometric Reviews, 37 128. Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54 217224. MacKinnon, J. G. (2013). Thirty years of heteroskedasticityrobust inference. In Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis (X. Chen and N. R. E. Swanson, eds.). Springer, 437462. MacKinnon, J. G. and White, H. (1985). Some heteroskedasticityconsistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29 305325. Mickey, M. R. and Brown, M. B. (1966). Bounds on the distribution functions of the BehrensFisher statistic. Ann. Math. Statist., 37 639642. Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7 308313. Pötscher, B. M. and Preinerstorfer, D. (2018). Controlling the size of autocorrelation robust tests. Journal of Econometrics, 207 406431. Pötscher, B. M. and Preinerstorfer, D. (2019). Further results on size and power of heteroskedasticity and autocorrelation robust tests, with an application to trend testing. Electronic Journal of Statistics, 13 38933942. Pötscher, B. M. and Preinerstorfer, D. (2020). How reliable are bootstrapbased heteroskedasticity robust tests? arXiv:2005.04089. Preinerstorfer, D. (2021). hrt: Heteroskedasticity Robust Testing. R package version 1.0.0. Preinerstorfer, D. and Pötscher, B. M. (2016). On size and power of heteroskedasticity and autocorrelation robust tests. Econometric Theory, 32 261358. Robinson, G. (1979). Conditional properties of statistical procedures. Annals of Statistics, 7 742755. Romano, J. P. and Wolf, M. (2017). Resurrecting weighted least squares. Journal of Econometrics, 197 119. Rothenberg, T. J. (1988). Approximate power functions for some robust tests of regression coefficients. Econometrica, 56 9971019. Ruben, H. (2002). A simple conservative and robust solution of the BehrensFisher problem. Sankhya Ser. A, 64 139155. Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2 110114. White, H. (1980). A heteroskedasticityconsistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48 817838. Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. 2nd ed. MIT Press, Cambridge, MA. Wooldridge, J. M. (2012). Introductory Econometrics. 5th ed. SouthWestern, OH. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/107420 
Available Versions of this Item
 Valid Heteroskedasticity Robust Testing. (deposited 30 Apr 2021 16:35) [Currently Displayed]