Logo
Munich Personal RePEc Archive

Valid Heteroskedasticity Robust Testing

Pötscher, Benedikt M. and Preinerstorfer, David (2021): Valid Heteroskedasticity Robust Testing.

Warning
There is a more recent version of this item available.
[thumbnail of MPRA_paper_107420.pdf]
Preview
PDF
MPRA_paper_107420.pdf

Download (1MB) | Preview

Abstract

Tests based on heteroskedasticity robust standard errors are an important technique in econometric practice. Choosing the right critical value, however, is not all that simple: Conventional critical values based on asymptotics often lead to severe size distortions; and so do existing adjustments including the bootstrap. To avoid these issues, we suggest to use smallest size-controlling critical values, the generic existence of which we prove in this article. Furthermore, sufficient and often also necessary conditions for their existence are given that are easy to check. Granted their existence, these critical values are the canonical choice: larger critical values result in unnecessary power loss, whereas smaller critical values lead to over-rejections under the null hypothesis, make spurious discoveries more likely, and thus are invalid. We suggest algorithms to numerically determine the proposed critical values and provide implementations in accompanying software. Finally, we numerically study the behavior of the proposed testing procedures, including their power properties.

Available Versions of this Item

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.