Massaro, Alessandro and Magaletti, Nicola and Cosoli, Gabriele and Giardinelli, Vito O. M. and Leogrande, Angelo (2022): The Prediction of Diabetes.
Preview |
PDF
MPRA_paper_113372.pdf Download (2MB) | Preview |
Abstract
The following article presents an analysis of the determinants of diabetes using a dataset containing the surveys of 2000 patients from the Frankfurt Hospital in Germany. The data were analyzed using the following models, namely: Tobit, Probit, Logit, Multinomial Logit, OLS, WLS with heteroskedasticity. The results show that the presence of diabetes is positively associated with "Pregnancies", "Glucose", "BMI", "Diabetes Pedigree Function", "Age" and negatively associated with "Blood Pressure". A cluster analysis is realized using the fuzzy c-Means algorithm optimized with the Elbow method and three clusters were found. Finally a confrontation among eight different machine learning algorithms is realized to select the best performing algorithm to predict the probability of patients to develop diabetes.
Item Type: | MPRA Paper |
---|---|
Original Title: | The Prediction of Diabetes |
English Title: | The Prediction of Diabetes |
Language: | English |
Keywords: | Machine Learning, Clusterization, Elbow Method, Prediction, Correlation Matrix, Principal Component Analysis, Binary and non-Binary regression models. |
Subjects: | I - Health, Education, and Welfare > I1 - Health > I10 - General I - Health, Education, and Welfare > I1 - Health > I11 - Analysis of Health Care Markets I - Health, Education, and Welfare > I1 - Health > I12 - Health Behavior I - Health, Education, and Welfare > I1 - Health > I13 - Health Insurance, Public and Private I - Health, Education, and Welfare > I1 - Health > I14 - Health and Inequality I - Health, Education, and Welfare > I1 - Health > I15 - Health and Economic Development I - Health, Education, and Welfare > I1 - Health > I18 - Government Policy ; Regulation ; Public Health |
Item ID: | 113372 |
Depositing User: | Dr Angelo Leogrande |
Date Deposited: | 15 Jun 2022 13:23 |
Last Modified: | 15 Jun 2022 13:23 |
References: | [1] H. Hall, D. Perelman, A. Breschi, P. Limcaoco, R. Kellogg, T. McLaughlin and M. Snyder, “Glucotypes reveal new patterns of glucose dysregulation,” PLoS biology, vol. 7, no. e2005143, p. 16, 2018. [2] D. R. Coustan, “Diabetes in pregnancy,” Clinical Maternal-Fetal Medicine Online , pp. 16-1, 2021. [3] D. A. Schoenaker, S. De Jersey, J. Willcox, M. E. Francois and S. Wilkinson, “Prevention of gestational diabetes: the role of dietary intake, physical activity, and weight before, during, and between pregnancies,” Seminars in reproductive medicine, vol. 6, no. 38, pp. 352-365, 2020. [4] C. L. Meek, B. Devoy, D. Simmons, C. J. Patient, A. R. Aiken, H. R. Murphy and C. E. Aiken, “Seasonal variations in incidence and maternal–fetal outcomes of gestational diabetes,” Diabetic Medicine, vol. 37, no. 4, pp. 674-680, 2020. [5] A. C. Sheehan, M. P. Umstad, S. Cole and T. J. Cade, “Does gestational diabetes cause additional risk in twin pregnancy?,” Twin Research and Human Genetics, vol. 22, no. 1, pp. 62-69, 2019. [6] A. P. Sunjaya and A. F. Sunjaya, “Diabetes in pregnancy and infant mortality: Link with glycemic control,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 12, no. 6, pp. 1031-1037., 2018. [7] C. Eberle, T. James-Todd and S. Stichling, “SARS-CoV-2 in diabetic pregnancies: a systematic scoping review,” BMC pregnancy and childbirth, vol. 21, no. 1, pp. 1-10, 2021. [8] F. D’Ambrosi, G. Rossi, C. M. Soldavini, I. F. Carbone, G. E. Cetera, N. Cesano and E. Ferrazzi, “Evaluation of fetal cardiac function in pregnancies with well-controlled gestational diabetes,” Archives of Gynecology and Obstetrics, vol. 304, no. 2, 2021. [9] K. Tanaka, K. Yamada, M. Matsushima, T. Izawa, S. Furukawa, Y. Kobayashi and M. Iwashita, “ Increased maternal insulin resistance promotes placental growth and decreases placental efficiency in pregnancies with obesity and gestational diabetes,” Journal of Obstetrics and Gynaecology Research, vol. 44, no. 1, pp. 74-80, 2018. [10] A. Kouhkan, M. E. Khamseh, A. Moini, R. Pirjani, A. E. Valojerdi, A. Arabipoor and H. R. Baradaran, “Predictive factors of gestational diabetes in pregnancies following assisted reproductive technology: a nested case–control study,” Archives of gynecology and obstetrics, , vol. 298, no. 1, pp. 199-206, 2018. [11] S. Nahavandi, J. M. Seah, A. Shub, C. Houlihan and E. I. Ekinci, “Biomarkers for macrosomia prediction in pregnancies affected by diabetes,” Frontiers in endocrinology, vol. 9, no. 407, 2018. [12] I. Schütz-Fuhrmann, A. K. Schütz, M. Eichner and J. K. Mader, “Two subsequent pregnancies in a woman with type 1 diabetes: artificial pancreas was a gamechanger,” Journal of Diabetes Science and Technology, vol. 14, no. 5, pp. 972-973, 2020. [13] L. Hiersch, H. Berger, R. Okby, J. G. Ray, M. Geary, S. D. McDonald and N. Melamed, “Gestational diabetes mellitus is associated with adverse outcomes in twin pregnancies,” American journal of obstetrics and gynecology, vol. 1, no. 102-e1, p. 220, 2019. [14] J. F. Plows, J. L. Stanley, P. N. Baker, C. M. Reynolds and M. H. Vickers, “The pathophysiology of gestational diabetes mellitus,” International journal of molecular sciences, vol. 11, no. 3342, p. 19, 2018. [15] F. Weschenfelder, F. Hein, T. Lehmann, E. Schleußner and T. Groten, “Contributing factors to perinatal outcome in pregnancies with gestational diabetes—what matters most? A retrospective analysis.,” Journal of Clinical Medicine, vol. 2, no. 348, p. 10, 2021. [16] C. M. Reynolds, E. G. O’Malley, B. Egan, S. R. Sheehan and M. J. Turner, “Maternal weight trajectories in successive pregnancies and their association with gestational diabetes mellitus,” Diabetes Care, vol. 43, no. 3, pp. e33-e34, 2020. [17] K. Kristensen, L. E. Ögge, V. Sengpiel, K. Kjölhede, A. Dotevall, A. Elfvin and K. Berntorp, “Continuous glucose monitoring in pregnant women with type 1 diabetes: an observational cohort study of 186 pregnancies,” Diabetologia, vol. 7, no. 1143, p. 62, 2019. [18] H. Kruit, S. Mertsalmi and L. Rahkonen, “Planned vaginal and planned cesarean delivery outcomes in pregnancies complicated with pregestational type 1 diabetes–A three-year academic tertiary hospital cohort study,” BMC Pregnancy and Childbirth, vol. 22, no. 1, 2022. [19] M. Wang, N. Athayde, S. Padmanabhan and N. W. Cheung, “Causes of stillbirths in diabetic and gestational diabetes pregnancies at a NSW tertiary referral hospital,” Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 59, no. 4, pp. 561-566, 2019. [20] P. Wu, W. E. Farrell, K. E. Haworth, R. D. Emes, M. O. Kitchen, J. R. Glossop and A. A. Fryer, “Maternal genome-wide DNA methylation profiling in gestational diabetes shows distinctive disease-associated changes relative to matched healthy pregnancies,” Epigenetics, vol. 13, no. 2, pp. 122-128, 2018. [21] J. Teliga-Czajkowska, J. Sienko, J. Zareba-Szczudlik, A. Malinowska-Polubiec, E. Romejko-Wolniewicz and K. Czajkowski, “Influence of glycemic control on coagulation and lipid metabolism in pregnancies complicated by pregestational and gestational diabetes mellitus,” Advances in Biomedicine , pp. 81-88, 2019. [22] Y. Shen, W. Li, J. Leng, S. Zhang, H. L. W. Liu and G. Hu, “High risk of metabolic syndrome after delivery in pregnancies complicated by gestational diabetes,” Diabetes research and clinical practice, no. 150, pp. 219-226, 2019. [23] M. V. Diaz-Santana, K. M. O’Brien, Y. M. M. Park, D. P. Sandler and C. R. Weinberg, “Persistence of risk for type 2 diabetes after gestational diabetes mellitus,” Diabetes Care, vol. 45, no. 4, pp. 864-870, 2022. [24] J. Lu, X. Ma, J. Zhou, L. Zhang, Y. Mo, L. Ying and W. Jia, “Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes,” Diabetes Care, vol. 41, no. 11, pp. 2370-2376, 2018. [25] A. Aguayo, I. Urrutia, T. González‐Frutos, R. Martínez, L. Martínez‐Indart, L. Castaño and A. Garrido, “Prevalence of diabetes mellitus and impaired glucose metabolism in the adult population of the Basque Country, Spain,” Diabetic Medicine, 2017. [26] K. I. Galaviz, M. B. Weber, A. Straus, J. S. Haw, K. V. Narayan and M. K. Ali, “Global diabetes prevention interventions: a systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose.,” Diabetes Care, vol. 41, no. 7, pp. 1526-1534, 2018. [27] T. Danne, S. Garg, A. L. Peters, J. B. Buse, C. P. J. H. Mathieu and M. Phillip, “International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium–glucose cotransporter (SGLT) inhibitors,” Diabetes care, vol. 42, no. 6, pp. 1147-1154, 2019. [28] L. Monnier, C. Colette, A. Wojtusciszyn, S. Dejager, E. Renard, N. Molinari and D. R. Owens, “Toward defining the threshold between low and high glucose variability in diabetes,” Diabetes care, vol. 40, no. 7, pp. 832-838, 2017. [29] B. Mabate, C. D. Daub, S. Malgas, A. L. Edkins and B. I. Pletschke, “Fucoidan structure and Its impact on glucose metabolism: Implications for diabetes and cancer therapy,” Marine Drugs, vol. 1, no. 30, p. 19, 2021. [30] K. Turksoy, E. Littlejohn and A. Cinar, “Multimodule, multivariable artificial pancreas for patients with type 1 diabetes: regulating glucose concentration under challenging conditions,” IEEE Control Systems Magazine, vol. 38, no. 1, pp. 105-124, 2018. [31] K. C. Gunawardena, R. Jackson, I. Robinett, L. Dhaniska, S. Jayamanne, S. Kalpani and D. Muthukuda, “The influence of the smart glucose manager mobile application on diabetes management,” Journal of diabetes science and technology, vol. 13, no. 1, pp. 75-81, 019. [32] S. Li, H. Yu, P. Zhang, Y. Tu, Y. Xiao, D. Yang and W. Jia, “The Nonlinear Relationship Between Psoas Cross-sectional Area and BMI: A New Observation and Its Insights Into Diabetes Remission After Roux-en-Y Gastric Bypass,” Diabetes Care, vol. 44, no. 12, pp. 2783-2786, 2021. [33] E. H. Ibfelt, D. Vistisen, P. Falberg Rønn, S. Pørksen, M. Madsen, B. Kremke and J. Svensson, “Association between glycaemic outcome and BMI in Danish children with type 1 diabetes in 2000–2018: a nationwide population‐based study,” Diabetic Medicine, vol. 3, no. e14401, p. 38, 2021. [34] S. Lin, T. Naseri, C. Linhart, S. Morrell, R. Taylor, S. T. McGarvey and P. Zimmet, “Trends in diabetes and obesity in Samoa over 35 years, 1978–2013,” Diabetic Medicine, vol. 34, no. 5, pp. 654-661, 2017. [35] G. Ji, W. Li, P. Li, H. Tang, Z. Yu, X. Sun and S. Zhu, “Effect of Roux-en-Y gastric bypass for patients with type 2 diabetes mellitus and a BMI< 32.5 kg/m2: a 6-year study in Chinese patients,” Obesity Surgery, vol. 30, no. 7, pp. 2631-2636, 2020. [36] F. Bragg, K. Tang, Y. Guo, A. Iona, H. Du and M. V. Holmes, “Associations of general and central adiposity with incident diabetes in Chinese men and women,” Diabetes care, vol. 41, no. 3, pp. 494-502, 2018. [37] P. R. Schauer, D. L. Bhatt, J. P. Kirwan, K. Wolski, A. Aminian, S. A. Brethauer and S. R. Kashyap, “Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes,” N Engl J Med, vol. 376, pp. 641-651, 2017. [38] Z. Yu, W. Li, X. Sun, H. Tang, P. Li, G. Ji and S. Zhu, “Predictors of Type 2 Diabetes Mellitus Remission After Metabolic Surgery in Asian Patients with a BMI< 32.5 kg/m2,” Obesity Surgery, vol. 31, no. 9, pp. 4125-4133, 2021. [39] M. T. Shen, Y. K. Guo, X. Liu, Y. Ren, L. Jiang, L. J. Xie and Z. G. Yang, “Impact of BMI on left atrial strain and abnormal atrioventricular interaction in patients with type 2 diabetes mellitus: A cardiac magnetic resonance feature tracking study,” Journal of Magnetic Resonance Imaging, 2022. [40] L. Cheng, H. Zhuang, H. Ju, S. Yang, J. Han, R. Tan and Y. Hu, “Exposing the causal effect of body mass index on the risk of type 2 diabetes mellitus: a mendelian randomization study.,” Frontiers in genetics, vol. 10, no. 94, 2019. [41] B. Mi, C. Wu, X. Gao, W. Wu, J. Du, Y. Zhao and H. Yan, “Long-term BMI change trajectories in Chinese adults and its association with the hazard of type 2 diabetes: Evidence from a 20-year China Health and Nutrition Survey,” BMJ Open Diabetes Research and Care, vol. 8, no. 1, p. e000879, 2020. [42] A. Dagliati, S. Marini, L. Sacchi, G. Cogni, M. Teliti, V. Tibollo and R. Bellazzi, “Machine learning methods to predict diabetes complications,” Journal of diabetes science and technology, vol. 12, no. 2, pp. 295-302, 2018. [43] G. Maskarinec, S. Jacobs, S. Y. Park, C. A. Haiman, V. W. Setiawan, L. R. Wilkens and L. Le Marchand, “Type II diabetes, obesity, and breast cancer risk: the Multiethnic Cohort,” Cancer Epidemiology and Prevention Biomarkers, vol. 26, no. 6, pp. 854-861, 2017. [44] J. Luo, A. Hodge, M. Hendryx and J. E. Byles, “BMI trajectory and subsequent risk of type 2 diabetes among middle-aged women,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 31, no. 4, pp. 1063-1070, 2021. [45] D. H. Lee, N. Keum, F. B. Hu, E. J. Orav, E. B. Rimm, W. C. Willett and E. L. Giovannucci, “Comparison of the association of predicted fat mass, body mass index, and other obesity indicators with type 2 diabetes risk: two large prospective studies in US men and women,” European journal of epidemiology, vol. 33, no. 11, pp. 1113-1123., 2018. [46] R. Zare, A. Nadjarzadeh, M. M. Zarshenas, M. Shams and M. Heydari, “Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial,” Clinical nutrition, vol. 38, no. 2, pp. 549-556, 2019. [47] P. Ghosh, S. Azam, A. Karim, M. Hassan, K. Roy and M. Jonkman, “A comparative study of different machine learning tools in detecting diabetes,” Procedia Computer Science, vol. 192, pp. 467-477, 2021. [48] A. Qayyum, S. Talpur and M. Jawaid, “Early Detection of Type 2 Diabetes using supervised machine learning,” Engineering Science and Technological International Research Journal, vol. 1, p. 5, 2021. [49] I. D. Oladipo and A. O. Babatunde, “Framework for genetic-neuro-fuzzy inferential system for diagnosis of diabetes mellitus,” Annals Comput. Sci. Series, vol. 16, no. 1, 2018. [50] S. K. Mohapatra, J. K. Swain and M. N. Mohanty, “Detection of diabetes using multilayer perceptron,” in International conference on intelligent computing and applications, Singapore, 2019. [51] O. Banerjee and K. V. V. Satyanarayana, “Prediction of Diabetes Mellitus using Ensembled Machine learning Techniques,” Annals of the Romanian Society for Cell Biology, pp. 701-711, 2021. [52] T. A. Assegie, T. Karpagam, R. Mothukuri, R. L. Tulasi and M. F. Engidaye, “Extraction of human understandable insight from machine learning model for diabetes prediction,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 2, pp. 1126-1133, 2022. [53] Q. M. Yas, “Evaluation Multi Diabetes Mellitus Symptoms by Integrated Fuzzy-based MCDM Approach,” Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 12, no. 13, pp. 4069-4082, 2021. [54] M. M. Bukhari, B. F. Alkhamees, S. Hussain, A. Gumaei, A. Assiri and S. S. Ullah, “An improved artificial neural network model for effective diabetes prediction,” Complexity, 2021. [55] Z. Mushtaq, M. F. Ramzan, S. Ali, S. Baseer, A. Samad and M. Husnain, “Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques,” Mobile Information Systems, 2022. [56] N. Kumar, N. Narayan Das, D. Gupta, K. Gupta and J. Bindra, “Efficient automated disease diagnosis using machine learning models,” Journal of Healthcare Engineering, 2021. [57] S. You and M. Kang, “A Study on Methods to Prevent Pima Indians Diabetes using SVM,” Korea Journal of Artificial Intelligence, vol. 8, no. 2, pp. 7-10, 2020. [58] R. Barhate and P. Kulkarni, “Analysis of classifiers for prediction of type ii diabetes mellitus,” 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), no. IEEE., pp. 1-6, 2018. [59] S. Larabi-Marie-Sainte, L. Aburahmah, A. R. and T. Saba, “Current techniques for diabetes prediction: review and case study,” Applied Sciences, vol. 21, no. 4604, p. 9, 2019. [60] Y. Liu, Z. Zhao, J. Wang, A. Li and J. Zhang, “Research on Diabetes Management Strategy Based on Deep Belief Network,” International Conference on Wireless and Satellite Systems, no. Springer, Cham., pp. 177-186, 2019. [61] B. Farhana, K. Munidhanalakshmi and R. M. Mohana, “Predict Diabetes Mellitus Using Machine Learning Algorithms,” Journal of Physics: Conference Series , vol. 2089, no. 1, p. 012002, 2021. [62] C. Roversi, E. Tavazzi, M. Vettoretti and B. Di Camillo, “A Dynamic Bayesian Network model for simulating the progression to diabetes onset in the ageing population,” 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) , vol. IEEE, pp. 1-4, 2021. [63] D. Khangura, L. R. Kurukulasuriya, A. Whaley-Connell and J. R. Sowers, “Diabetes and hypertension: clinical update,” American Journal of Hypertension, vol. 31, no. 5, pp. 515-521, 2018. [64] A. Massaro, A. V. Maritati, D. Giannone, D. Convertini and A. Galiano, “LSTM DSS Automatism and Dataset Optimization for Diabetes Prediction,” Applied Sciences, vol. 9, no. 3532, p. 17, 2019. [65] A. Massaro, G. Meuli, N. Savino and A. Galiano, “Voice Analysis Rehabilitation Platform based,” International Journal of Telemedicine and Clinical Practices (IJTMCP), vol. 3, no. 4, 2022. [66] A. Massaro, V. Maritati, N. Savino, A. Galiano, D. Convertini, E. De Fonte and M. Di Muro, “A Study of a Health Resources Management Platform Integrating Neural Networks and DSS Telemedicine for Homecare Assistance,” Information, vol. 9, no. 176, pp. 1-20, 208. [67] A. Massaro, V. Maritati, N. Savino and A. Galiano, “Neural Networks for Automated Smart Health Platforms oriented on Heart Predictive Diagnostic Big Data Systems,” IEEE Proceeding AEIT, 2018. [68] A. Galiano, A. Massaro, B. Boussahel, D. Barbuzzi, F. Tarulli, L. Pellicani, L. Renna, A. Guarini, G. De Tullio, G. Nardelli, R. Bonaduce, C. Minoia, S. Ciavarella, V. De Fazio, A. Negri and C. Marchionna, “Improvements in Haematology for Home Health Assistance and Monitoring by a Web based Communication System,” Proceeding of IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2016. [69] A. Massaro, A. Galiano, D. Scarafile, A. Vacca, A. Frassanito, A. Melaccio and F. Attivissimo, “Telemedicine DSS-AI Multi Level Platform for Monoclonal Gammopathy Assistance,” IEEE Proceeding of MeMeA 2020, 2020. [70] A. Massaro, G. Ricci, S. Selicato, S. Raminelli and A. Galiano, “Decisional Support System with Artificial Intelligence oriented on Health Prediction using a Wearable Device and Big Data,” 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, pp. 718-723, 2020. [71] A. Massaro, Electronic in Advanced Research Industry: From Industry 4.0 to Industry 5.0 Advances, Wiley/IEEE, 2021. [72] A. Massaro, N. Magaletti, V. O. Giardinelli, G. Cosoli, A. Leogrande and F. Cannone, “Original Data Vs High Performance Augmented Data for ANN Prediction of Glycemic Status in Diabetes Patients,” University Library of Munich, German, no. 112638, 2022. [73] A. Massaro, V. O. Giardinelli, G. Cosoli, N. Magaletti and A. Leogrande, “The Prediction of Hypertension Risk,” University Library of Munich, Germany, no. 113242, 2022. [74] A. Massaro, N. Magaletti, G. Cosoli, A. Leogrande and F. Cannone, “Use of Machine Learning to Predict the Glycemic Status of Patients with Diabetes,” 2021. [75] C. J. van der Kallen, G. J. Biessels and C. D. Stehouwer, “The Role of Hyperglycemia, Insulin Resistance, and Blood Pressure in Diabetes-Associated Differences in Cognitive PerformancedThe Maastricht Study,” Diabetes Care, vol. 40, no. 1537, 2017. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/113372 |