Aparicio, Juan and Santín, Daniel
(2022):
*A New Malmquist Index Based on a Standard Technology for Measuring Total Factor Productivity Changes.*

Preview |
PDF
MPRA_paper_114467.pdf Download (696kB) | Preview |

## Abstract

The Malmquist productivity index is one of the best known and most widely used measures in the economic literature to quantify and decompose changes in productivity of multi-input multi-output production processes over time. Two main approaches are used to calculate this index: the adjacent Malmquist index and the base period Malmquist index. No base period is required to calculate the adjacent Malmquist index, but it fails to comply with the circularity property. The base period Malmquist index uses the technology of a base period and is circular, but the base period choice is arbitrary. There is, therefore, a trade-off between the choice of one or other version of the Malmquist index. The aim of this paper is to propose a new total factor productivity index that is simultaneously circular and does not need to resort to a base period or ad hoc reference. To this end, as in other sciences, we propose a new multi-input multi-output reference production technology for use as a standard for measuring and decomposing total factor productivity changes. As discussed, the standard production technology is conceptually attractive. Also, its parameterization is versatile and adaptable to the evolution of a set of firms performing any multi-input multi-output production process. Additionally, the new approach can bring about a true total factor productivity index, which can be decomposed into an output change and an input change. Finally, the new index can be used to decompose the traditional technical change component into a global technical change applicable across the industry under study and a locally specific technical change dependent on the assessed firm.

Item Type: | MPRA Paper |
---|---|

Original Title: | A New Malmquist Index Based on a Standard Technology for Measuring Total Factor Productivity Changes |

Language: | English |

Keywords: | Productivity change, Malmquist index, technical change, efficiency change, standard |

Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C43 - Index Numbers and Aggregation D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O47 - Empirical Studies of Economic Growth ; Aggregate Productivity ; Cross-Country Output Convergence |

Item ID: | 114467 |

Depositing User: | Dr. Daniel Santin |

Date Deposited: | 19 Sep 2022 09:00 |

Last Modified: | 19 Sep 2022 09:00 |

References: | Althin, R. (2001). Measurement of productivity changes: two Malmquist index approaches. Journal of Productivity Analysis, 16(2), 107-128. Ang, F., & Kerstens, P. J. (2017). Decomposing the Luenberger–Hicks–Moorsteen total factor productivity indicator: An application to US agriculture. European Journal of Operational Research, 260(1), 359-375. Aparicio, J., & Santín, D. (2018). A note on measuring group performance over time with pseudo-panels. European Journal of Operational Research, 267(1), 227-235. Asmild, M., & Tam, F. (2007). Estimating global frontier shifts and global Malmquist indices. Journal of Productivity Analysis, 27(2), 137-148. Balk, B. M. (1995). Axiomatic price index theory: a survey. International Statistical Review/Revue Internationale de Statistique, 69-93. Balk, B. M., & Althin, R. (1996). A new, transitive productivity index. Journal of Productivity Analysis, 7(1), 19-27. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092. Berg, S. A., Førsund, F. R. and Jansen, E. S. (1992) Malmquist Indices of Productivity Growth during the Deregulation of Norwegian Banking, 1980–89. The Scandinavian Journal of Economics (Supplement): 211-228. Bjurek, H. (1996). The Malmquist total factor productivity index. The Scandinavian Journal of Economics, 303-313. Camanho, A. S., & Dyson, R. G. (2006). Data envelopment analysis and Malmquist indices for measuring group performance. Journal of productivity Analysis, 26(1), 35-49. Camanho, A. S., Varriale, L., Barbosa, F., & Sobral, T. (2021). Performance assessment of upper secondary schools in Italian regions using a circular pseudo-Malmquist index. European Journal of Operational Research, 289(3), 1188-1208. Caves, D. W., Christensen, L. R. and Diewert, W. E. (1982) Multilateral comparisons of output, input and productivity using superlative index numbers. The Economic Journal, 92: 73-86. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European journal of operational research, 2(6), 429-444. De Witte, K. D., & López-Torres, L. (2017). Efficiency in education: a review of literature and a way forward. Journal of the Operational Research Society, 68(4), 339-363. Diewert, W. E., & Fox, K. J. (2017). Decomposing productivity indexes into explanatory factors. European Journal of Operational Research, 256(1), 275-291. Eichhorn, W., & Voeller, J. (1976). Theory of the Price Index: Lecture Notes in Economics and Mathematical Systems. Springer-Verlag. Färe, R. (1988). Fundamentals of Production Theory. Berlin: Springer-Verlag. Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1992). Productivity changes in Swedish pharmacies 1980–1989: A non-parametric Malmquist approach. Journal of productivity Analysis, 3(1), 85-101. Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994a). Productivity developments in Swedish hospitals: a Malmquist output index approach. In Data envelopment analysis: Theory, methodology, and applications (pp. 253-272). Springer, Dordrecht. Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994b). Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review, 66-83. Färe, R., & Primont, D. (1995). Multi-output production and duality: Theory and applications. Springer, Dordrecht. Färe, R., & Zelenyuk, V. (2021). On aggregation of multi-factor productivity indexes. Journal of Productivity Analysis, 55(2), 107-133. Fisher, I. (1922). The making of index numbers: a study of their varieties, tests, and reliability. Boston: Houghton Mifflin Company. Frisch, R. (1936) Annual survey of general economic theory: the problem of index numbers. Econometrica, 4: 1-38. Grifell-Tatjé, E., & Lovell, C. A. K. (1995). A note on the Malmquist productivity index. Economics Letters, 47(2), 169-175. Hollingsworth, B. (2008). The measurement of efficiency and productivity of health care delivery. Health Economics, 17(10), 1107-1128. Lovell, C. A. K., & Pastor, J. T. (1995). Units invariant and translation invariant DEA models. Operations Research Letters, 18(3), 147-151. Lovell, C. A. K. (2003). The decomposition of Malmquist productivity indexes. Journal of Productivity Analysis, 20(3), 437-458. Madden, P. (1986). Concavity and optimization in microeconomics. Oxfordshire: Blackwell. Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estadística, 4(2), 209-242. Marsaglia, G. (1972). Choosing a point from the surface of a sphere. The Annals of Mathematical Statistics, 43(2), 645-646. O’Donnell, C. J. (2012). An aggregate quantity framework for measuring and decomposing productivity change. Journal of Productivity Analysis, 38(3), 255-272. Onn, S., & Weissman, I. (2011). Generating uniform random vectors over a simplex with implications to the volume of a certain polytope and to multivariate extremes. Annals of Operations Research, 189(1), 331-342. Otsuki, T. (2013). Nonparametric measurement of the overall shift in the technology frontier: an application to multiple-output agricultural production data in the Brazilian Amazon. Empirical Economics, 44(3), 1455-1475. Pastor, J.T. and Lovell, C.A.K. (2005) A global Malmquist productivity index. Economics Letters, 88: 266-271. Pastor, J.T. and Lovell, C.A.K. (2007) Circularity of the Malmquist productivity index. Economic Theory, 33: 591-599. Pastor, J. T., Asmild, M., & Lovell, C. A. K. (2011). The biennial Malmquist productivity change index. Socio-Economic Planning Sciences, 45(1), 10-15. Pastor, J. T., Lovell, C. A. K., & Aparicio, J. (2020). Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index. European Journal of Operational Research, 281(1), 222-230. Ray, S. C., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: comment. The American Economic Review, 87(5), 1033-1039. Shephard, R. W. (1970), Theory of Cost and Production Functions. Princeton: Princeton University Press. Walheer, B. (2022). Global Malmquist and cost Malmquist indexes for group comparison. Journal of Productivity Analysis, 58, 75-93. Zofío, J. L. (2007). Malmquist productivity index decompositions: a unifying framework. Applied Economics, 39(18), 2371-2387. |

URI: | https://mpra.ub.uni-muenchen.de/id/eprint/114467 |