Blankmeyer, Eric (2022): A bias test for heteroscedastic linear least squares regression.
Preview |
PDF
MPRA_paper_116605.pdf Download (1MB) | Preview |
Abstract
A correlation between regressors and disturbances presents challenging problems in linear regression. Issues like omitted variables, measurement error and simultaneity render ordinary least squares (OLS) biased and inconsistent. In the context of heteroscedastic linear regression, this note proposes a bias test that is simple to apply. It does not reveal the size or sign of OLS bias but instead provides a statistic to assess the probable presence or absence of bias. The test is examined in simulation and in real data sets.
Item Type: | MPRA Paper |
---|---|
Original Title: | A bias test for heteroscedastic linear least squares regression |
Language: | English |
Keywords: | Linear regression, least squares bias, heteroscedasticity, Fisher transformation |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables |
Item ID: | 116605 |
Depositing User: | Mr. Eric Blankmeyer |
Date Deposited: | 07 Mar 2023 06:47 |
Last Modified: | 07 Mar 2023 06:47 |
References: | Anderson, T., 1984. Introduction to Multivariate Statistics. New York: Wiley. Basu, D., 2020. Bias of OLS estimators due to exclusion of relevant variables and inclusion of irrelevant variables. Oxford Bulletin of Economics and Statistics, 82: 209-234. Blankmeyer, E., 2013. Structural-equation estimation without instrumental variables. Social Science Research Network paper 2316436. Blankmeyer, E., 2022. Explorations in NISE Estimation. Available at https://mpra.ub.uni-muenchen.de/114477/ and at http://ssrn.com/abstract=4220048. Cox, N., 2008. Speaking Stata: Correlation with confidence, or Fisher’s z revisited. Stata Journal 8: 413-439. Croissant, Y., 2015. Ecdat: data sets for econometrics. Available at https://cran.r-project.org/web/packages/. Dagenais, M., D. Dagenais, 1997. Higher moment estimators for linear regression models with errors in the variables. Journal of Econometrics 13: 145-162. Davidson, R., J. MacKinnon, 1993. Estimation and Inference in Economics. New York: Oxford University Press. Erickson, T., T. Whited, 2002. Two-step GMM estimation of the errors-in-variables model using higher-order moments. Econometric Theory 18: 776-799. Fox, J., S. Weisberg, 2015. Companion to Applied Regression (R package ‘car’), http://cran.r-project.org/web/packages. Greene, W., 2003. Econometric Analysis, fifth edition. Upper Saddle River NJ: Prentice Hall. Heckman, J., L. Lochner, P. Todd, 2003. "Fifty Years of Mincer Earnings Regressions". NBER Working Paper No. 9732. Hubert M., P. Rousseeuw , T. Verdonck , 2010. A deterministic algorithm for the LTS estimator. Presented at the ICORS, Prague, 28 Jun 2010-02 Jul 2010. Hubert, M., P. Rousseeuw, D. Vanpaemel, T. Verdonck (2015). The DetS and DetMM estimators for multivariate location and scatter. Computational Statistics and Data Analysis 81: 64–75. Kleiber, C., A. Zeileis, 2015. R package AER. Available at http://cran.r-project.org/web/packages. Koenker, R., 2005. Quantile Regression. New York: Cambridge University Press. Koenker R., 2011. R package quantreg. Available at http://cran.r-project.org/web/packages. Lewbel, A., 2012. Using heteroskedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business and Economic Statistics 30: 67-80. Liviatan, N., 1961. Errors in variables and Engel curve analysis. Econometrica 29: 336-362. Maronna, R., R. Martin, V. Yohai, 2006. Robust Statistics. Chichester, England: John Wiley & Sons. Milunovich, G., M. Yang, 2018. Simultaneous equation systems with heteroscedasticity: identification, estimation, and stock price elasticities. Journal of Business & Economic Statistics, 36: 288-308. Portnoy, S., A. Welsh, 1992. Exactly what is being modelled by the systematic component in a heteroscedastic linear regression. Statistics & Probability Letters 13: 253-258 Rousseeuw, P., K. Van Driessan, 2006. Computing LTS regression for large data sets. Data Mining and Knowledge Discovery, 12: 29-45. Texas Health and Human Services Commission, 2002. 2002 Cost Report – Texas Nursing Facility. Austin, Texas. Vakili, K., 2018. R package ‘DetR’. Available at http://cran.r-project.org/web/packages. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/116605 |