Mullat, Joseph (2023): Validating the Postulates of rational Choice in the Context of economical Fuel Consumption of Vehicles.
Preview |
PDF
Irrational-Comp-Car.pdf Download (437kB) | Preview |
Abstract
We have introduced an innovative procedure called "blind statistical scoring" that simplifies the analysis of statistical indicators. This procedure aligns with the principle of parsimony, also known as Ockham's razor. By applying this procedure, we confirm several postulates within the concept of bounded rationality of choice. To illustrate this phenomenon, we conducted an experiment with the data provided by Spritmonitor.de website, which contains data, search results, texts, graphics, software and other information.
Item Type: | MPRA Paper |
---|---|
Original Title: | Validating the Postulates of rational Choice in the Context of economical Fuel Consumption of Vehicles |
Language: | English |
Keywords: | car market; fuel impulses; monotonic; Ockham's razor; kernel/closer |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General G - Financial Economics > G0 - General G - Financial Economics > G0 - General > G02 - Behavioral Finance: Underlying Principles R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R4 - Transportation Economics Y - Miscellaneous Categories > Y1 - Data: Tables and Charts Y - Miscellaneous Categories > Y1 - Data: Tables and Charts > Y10 - Data: Tables and Charts |
Item ID: | 117929 |
Depositing User: | Joseph E. Mullat |
Date Deposited: | 09 Aug 2023 13:22 |
Last Modified: | 09 Aug 2023 13:22 |
References: | 1. Adler R. J. (2010). The Geometry of Random Fields. SIAM. ISBN 978-0-89871-693-1. 2. Aizerman, M.A. and A.V. Malishevski. (1981). Some Aspects of the General Theory of Best Option Choice, Translated from Avtomatika i Telemekhanika, No. 2, pp. 65–83, February, 1981. Original article submitted September 5, 1980. 3. Applebaum D. (2004). Lévy Processes and Stochastic Calculus. Cambridge University Press. ISBN 978-0-521-83263-2. 4. Arrow, K.J. a) (1948). The possibility of a Universal Welfare Function, Project RAND, RAD(L)-289, 26 October, Santa Monica, California (hectographed); b) (1959). Rational Choice functions and orderings, Economica, 26, No. 102, 121–127. 5. Chernoff, H. (1954). Rational selection of decision functions, Econometrica, 22, No. 3, pp. 422–443. 6. Frey T. and L.K. Võhandu. (1966). Uus Meetod Klassifikatsiooniühikute Püstitatimiseks, Eesti NSV Akadeemia Toimetised, XV Kõide, Bioloogiline Seeria, Nr. 4, 565-576. 7. Jamison, D.T. and L.J. Lau. (1973). Semiorders and the theory of choice, Econometrica, 41, No. 5, 901–912. 8. Kempner Y., Mirkin B. and I.B. Muchnik. (1997). Monotone Linkage Clustering and Quasi-Concave Set Functions, Appl. Math. Lett. Vol. 10, No. 4, pp. 19-24. 9. Koller D. and Friedman N. (2009). Probabilistic Graphical Models, Principles and Techniques. The MIT Press, Cambridge, Massachusetts, London, England. 10. Lifshits M. (2012). Lectures on Gaussian Processes. Springer Science & Business Media. ISBN 978-3-642-24939-6. 11. Mirkin B.G., Muchnik I.B. and Temple F. Smith. (1995). Journal of Computational Biology, pp. 493-507. 12. Mullat, J.E. a) (1971). ON A MAXIMUM PRINCIPLE FOR CERTAIN FUNCTIONS OF SETS, in: Notes on Data Processing and Functional Analysis, Proceedings of the Tallinn Polytechnic Institute (in Russian), Series A, No. 313, Tallinn Polytechnic Institute, pp. 37–44; b) (1976). EXTREMAL SUBSYSTEMS OF MONOTONIC SYS-TEMS, 1, Avtom, Telemekh., No. 5, pp. 130–139; c) (1995). A fast algorithm for finding matching responses in a survey data table, Mathematical Social Sciences 30, pp. 195–205. 13. Narula S.C. and H.R. Weistroffer. (1989). A flexible method for nonlinear multicriteria deci-sion-making problems. In IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 4, pp. 883-887. 14. Nash, J.F. (1950). The Bargaining Problem, Econometrica 18, pp. 155-162. 15. Rogers L.C.G. and D. Williams. (2000). Diffusions, Markov Processes, and Martingales: Vol-ume 1, Foundations. Cambridge University Press. ISBN 978-1-107-71749-7. 16. Seiarth F., Horváth T. and S. Wrobel. (2021). Maximal Closed Set and Half-Space Separations in Finite Closure Systems, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.12457, p.318, https://arxiv.org/pdf/2001.04417.pdf (Accessed 5.08.2023). 17. Sen, A.K. (1971). Choice functions and revealed preference, Rev. Econ. Stud., 38, No, 3 (115), pp. 307-317. 18. Strzalecki, T. (2011). “Axiomatic foundations of multiplier preferences,” Econometrica, 79(1), 47–73. 19. Voelkle, M.C., Oud, J.H.L., Davidov, E. and P. Schmidt. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and ano-mia. Psychological Methods, 17(2), pp. 176–192; Correction to Voelkle, Oud, Davidov, and Schmidt. (2012). Psychological Methods, 17(3), p. 384. 20. Walter E. and L. Pronzato. (1997). Identification of Parametric Models from Experimental Data. London, England: Springer-Verlag. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/117929 |