Li, Chenxing and Maheu, John M (2023): Beyond Conditional Second Moments: Does Nonparametric Density Modelling Matter to Portfolio Allocation?
This is the latest version of this item.
Preview |
PDF
draft17.pdf Download (830kB) | Preview |
Abstract
This paper investigates the economic importance of nonparametrically/semiparametrically modelling the shape and the change in the unknown distribution of returns in portfolio allocation problems from a Bayesian perspective. Besides parametric multivariate GARCH (MGARCH) benchmark models for returns, we consider an MGARCH with innovations following a Dirichlet process mixture and an infinite hidden Markov model (IHMM). We introduce a new Bayesian semiparametric model that combines the MGARCH component with the IHMM for innovations. This new model nonparametrically approximates both the shape and evolution through time of the unknown distribution of returns beyond that captured by the MGARCH part. The results show that the Bayesian nonparametric/semiparametric models lead to improved statistical forecast accuracy and economic gains for a quadratic utility and CRRA utility investor. The new model makes the greatest gains. Portfolio choice is improved by modelling beyond the conditional second moments.
Item Type: | MPRA Paper |
---|---|
Original Title: | Beyond Conditional Second Moments: Does Nonparametric Density Modelling Matter to Portfolio Allocation? |
Language: | English |
Keywords: | Multivariate GARCH; IHMM; Bayesian nonparametric; Portfolio allocation; Transaction costs |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C34 - Truncated and Censored Models ; Switching Regression Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 118470 |
Depositing User: | Dr Chenxing Li |
Date Deposited: | 13 Sep 2023 13:28 |
Last Modified: | 13 Sep 2023 13:28 |
References: | Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, pages 1152–1174. Bauwens, L., Preminger, A., and Rombouts, J. V. K. (2010). Theory and inference for a Markov switching GARCH model. The Econometrics Journal, 13(2):218–244. Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2002). The infinite hidden Markov model. In Advances in Neural Information Processing Systems, pages 577–584. Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. The Review of Economics and Statistics, pages 498–505. Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. Journal of Political Economy, 96(1):116–131. Bollerslev, T., Patton, A. J., and Quaedvlieg, R. (2018). Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions. Journal of Econometrics, 207(1):71–91. Bonato, M. (2012). Modeling fat tails in stock returns: a multivariate stable-GARCH approach. Computational Statistics, 27(3):499–521. Chib, S. (1996). Calculating posterior distributions and modal estimates in Markov mixture models. Journal of Econometrics, 75(1):79–97. DeMiguel, V., Garlappi, L., and Uppal, R. (2007). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5):1915–1953. Dufays, A. (2016). Infinite-state Markov-switching for dynamic volatility. Journal of Financial Econometrics, 14(2):418–460. Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3):339–350. Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11(1):122–150. Fleming, J., Kirby, C., and Ostdiek, B. (2001). The economic value of volatility timing. The Journal of Finance, 56(1):329–352. Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. (2011). A sticky HDP-HMM with application to speaker diarization. The Annals of Applied Statistics, pages 1020–1056. Guidolin, M. and Timmermann, A. (2007). Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11):3503–3544. Hou, C. (2017). Infinite hidden Markov switching VARs with application to macroeconomic forecast. International Journal of Forecasting, 33(4):1025–1043. Jagannathan, R. and Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4):1651–1683. Jensen, M. J. and Maheu, J. M. (2013). Bayesian semiparametric multivariate GARCH modeling. Journal of Econometrics, 176(1):3–17. Jin, X. and Maheu, J. M. (2016). Bayesian semiparametric modeling of realized covariance matrices. Journal of Econometrics, 192(1):19–39. Jin, X., Maheu, J. M., and Yang, Q. (2019). Bayesian parametric and semiparametric factor models for large realized covariance matrices. Journal of Applied Econometrics, 34(5):641–660. Jin, X., Maheu, J. M., and Yang, Q. (2022). Infinite Markov pooling of predictive distributions. Journal of Econometrics, 228(2):302–321. Jochmann, M. (2015). Modeling U.S. inflation dynamics: A Bayesian nonparametric approach. Econometric Reviews, 34(5):537–558. Kawakatsu, H. (2006). Matrix exponential GARCH. Journal of Econometrics, 134(1):95–128. Kroner, K. F. and Ng, V. K. (1998). Modeling asymmetric comovements of asset returns. The Review of Financial Studies, 11(4):817–844. Maheu, J. M. and Shamsi Zamenjani, A. (2021). Nonparametric dynamic conditional beta. Journal of Financial Econometrics, 19(4):583–613. Maheu, J. M. and Yang, Q. (2016). An infinite hidden Markov model for short-term interest rates. Journal of Empirical Finance, 38:202–220. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3):519–530. Pesaran, B. and Pesaran, M. H. (2010). Conditional volatility and correlations of weekly returns and the var analysis of 2008 stock market crash. Economic Modelling, 27(6):1398–1416. Pettenuzzo, D. and Timmermann, A. (2011). Predictability of stock returns and asset allocation under structural breaks. Journal of Econometrics, 164(1):60–78. Pitman, J. (2002). Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformations of an interval partition. Combinatorics, Probability and Computing, 11(5):501–514. Rydén, T., Teräsvirta, T., and Åsbrink, S. (1998). Stylized facts of daily return series and the hidden Markov model. Journal of Applied Econometrics, 13(3):217–244. Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, pages 639–650. Song, Y. (2014). Modelling regime switching and structural breaks with an infinite hidden Markov model. Journal of Applied Econometrics, 29(5):825–842. Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566–1581. Van Gael, J., Saatci, Y., Teh, Y. W., and Ghahramani, Z. (2008). Beam sampling for the infinite hidden Markov model. In Proceedings of the 25th International Conference on Machine Learning, pages 1088–1095. ACM. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/118470 |
Available Versions of this Item
-
A multivariate GARCH model with an infinite hidden Markov mixture. (deposited 20 Apr 2022 07:07)
- Beyond Conditional Second Moments: Does Nonparametric Density Modelling Matter to Portfolio Allocation? (deposited 13 Sep 2023 13:28) [Currently Displayed]