Zhukovskiy, Vladislav and Zhukovskaya, Lidia and Smirnova, Lidia (2023): Synthesis of equilibrium. Published in:
Preview |
PDF
MPRA_paper_119397.pdf Download (657kB) | Preview |
Abstract
For a noncooperative N-player normal-form game, we introduce the concept of hybrid equilibrium (HE) by combining the concepts of Nash and Berge equilibria and Pareto maximum. Some properties of hybrid equilibria are explored and their existence in mixed strategies is established under standard assumptions of mathematical game theory (convex and compact strategy sets and continuous payoff functions). Similar results are obtained for noncooperative N-player normal-form games under uncertainty.
Item Type: | MPRA Paper |
---|---|
Original Title: | Synthesis of equilibrium |
Language: | English |
Keywords: | uncertainty, mixed strategies, equilibrium, saddle point, Pareto optimality |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C00 - General C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods |
Item ID: | 119397 |
Depositing User: | Mrs Ekaterina Koroleva |
Date Deposited: | 20 Dec 2023 11:43 |
Last Modified: | 20 Dec 2023 11:43 |
References: | 1. Nash, J. F. (1951) Non-Cooperative Games. Annales of Mathematics. 54 (2). p. 286–295. 2. Nash, J. F. (1950) Equilibrium Points in N-Person Games. Proc. Natl. Acad. Sci. USA. 36 (1). p. 48–49. 3. Basar, T. and Olsder, G. J. (1982) Dynamic Noncooperative Game Theory. London: Academic Press. 4. Bellman, R. (1956) On the Application of Dynamic Programming to Variational Problems Arising in Mathematical Economics. Proc. Symposium in Calculus of Variations and Applications, New York: McGraw–Hill. 184. p. 115–138. 5. Zhukovskiy, V. I. (1985) Some Problems of Non-Antagonistic Differential Games. Mathematical Methods in Operations Research, Institute of Mathematics with Union of Bulgarian Mathematicians, Rousse. . p. 103–195. 6. Berge, C. (1957) Th´eorie g´en´erale des jeux a n personnes. Paris: Gauthier-Villar. 7. Vaisman, K. (1995) Berge Equilibrium, Cand. Sci. (Phys.-Math.) Dissertation. St. Petersburg: St.Petersburg. Gos. Univ. 8. Vaisman, K. (1994) Berge equilibrium.. Lineino-kvadratichnye differentsial’nye igry (Linear- Quadratic Differential Games) Zhukovskiy, V. and Chikrii, A. Kiev: Naukova Dumka. p. 119–143. 9. Vaisman, K. S. and Zhukovskiy, V. I. (1994) The Berge Equilibrium under Uncertainty. The 3-rd Intern. Workshop on Multiple Criteria Problems under Uncertainty. . p. 97–98. 10. Borel, E. (1927) Sur les systemes de formes lineares a determinant symetrique gauche et la theorie generale du jeu. Comptes Rendus de l’Academie des Sciences. 184. p. 52–53. 11. Von Neumann, J. (1928) Zur Theorie der Gesellschaftspiele. Mathematische Annalen. 100 (1). p. 295–320. 12. Zhukovskiy, V. I. (2011) Riski pri konfliktnykh situatsiyakh (Risks in Conflict Situations). Moscow: URSS, LENAND. 13. Vorobiev, N. N. (1984) Osnovy teorii igr. Beskoalitsionnye igry (Fundamentals of Game Theory. Noncooperative Games). Moscow: Nauka. 14. Podinovskiy, V. V. and Nogin, V. D. (2007) Pareto-optimal’nye resheniya mnogokriterial’nykh zadach (Pareto Optimal Solutions of Multicriteria Problems). Moscow: Fizmatlit. 15. Zhukovskiy, V. I. and Kudryavtsev, K. N. (2016) Pareto-Optimal Nash Equilibrium: Sufficient Conditions and Existence in Mixed Strategies. Automation and Remote Control. 77 (8). p. 1500– 1510. 16. GANTMAKHER, F. R. (1959) The Theory of Matrices. Vols. 1 and 2. New York: Chelsea Publishing. 17. GERMEYER, Yu. B (1971) Vvedenie v teoriyu issledovaniya operatsii (Introduction to Operations Research). Moscow: Nauka. 18. LYUSTERNIK, L. A. and SOBOLEV, V. I. (1969) Elementy funktsional’nogo analiza (Elements of Functional Analysis). Moscow: Nauka. 19. KRASOVSKIY, N. N. and SUBBOTIN, A. I. (1985) Pozitsionnye differentsial’nye igry (Positional Differential Games),. Moscow: Nauka. 20. DMITRUK, A. V (2012) Vypuklyi analiz. Elementarnyi vvodnyi kurs (Convex Analysis. An Elementary Introductory Course). Moscow: Makspress. 21. GLICKSBERG, I. L. (1952) A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc.. 3 (1). p. 170–174. 22. ZHUKOVSKIY, V. I. and KUDRYAVTSEV, K. N. (2013) Equilibrating Conflicts under Uncertainty. I. Analogue of a Saddle-Point. Mat. Teor. Igr Prilozh.. 5 (1). p. 27–44. 23. ZHUKOVSKIY, V. I. and KUDRYAVTSEV, K. N. (2013) Equilibrating Conflicts under Uncertainty. II. Analogue of a Maximin. Mat. Teor. Igr Prilozh.. 5 (2). p. 3–45. 24. ZHUKOVSKIY, V. I. and KUDRYAVTSEV, K. N. (2012) Uravnoveshivanie konfliktov i prilozheniya (Equilibrating Conflicts and Applications). Moscow: URSS. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/119397 |