Huo, Da (2024): Efficient Estimation of Stochastic Parameters: A GLS Approach.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_119731.pdf Download (1MB) | Preview |
Abstract
This thesis presents a novel rolling GLS-based model to improve the precision of time-varying parameter estimates in dynamic linear models. Through rigorous simulations, the rolling GLS model exhibits enhanced accuracy in scenarios with smaller sample sizes and maintains its efficacy when the normality assumption is relaxed, distinguishing it from traditional models like Kalman Filters. Furthermore, the thesis expands on the model to tackle more complex stochastic structures and validates its effectiveness through practical applications to real-world financial data, like inflation risk premium estimations. The research culminates in offering a robust tool for financial econometrics, enhancing the reliability of financial analyses and predictions.
Item Type: | MPRA Paper |
---|---|
Original Title: | Efficient Estimation of Stochastic Parameters: A GLS Approach |
Language: | English |
Keywords: | Time Series Analysis, Dynamic Linear Model, Stochastic Parameters, Least Squares |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates |
Item ID: | 119736 |
Depositing User: | Da Huo |
Date Deposited: | 16 Jan 2024 08:06 |
Last Modified: | 16 Jan 2024 08:06 |
References: | Newey, Whitney K. and Kenneth D. West (1987). “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix”. In: Econometrica 55.3, pp. 703–708. issn: 00129682, 14680262. url: http://www.jstor.org/stable/1913610 (visited on 12/04/2023). Kalman, R. E. (Mar. 1960). “A New Approach to Linear Filtering and Prediction Problems”. In: Journal of Basic Engineering 82.1, pp. 35–45. issn: 0021-9223. doi: 10.1115/1.3662552. url: https://doi.org/10.1115/1.3662552. Rauch, H. E., F. Tung, and C. T. Striebel (1965). “Maximum likelihood estimates of linear dynamic systems”. In: AIAA Journal 3.8, pp. 1445–1450. doi: 10.2514/3.3166. url: https://doi.org/10.2514/3.3166. Hamilton, James D. (1989). “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle”. In: Econometrica 57.2, pp. 357–384. issn: 00129682, 14680262. url: http://www.jstor.org/stable/1912559 (visited on 11/30/2023). Doucet, Arnaud and A.M. Johansen (2011). A Tutorial on Particle Filtering and Smoothing: Fifteen years Later. 1st ed. Oxford, UK: Oxford University Press. Julier, Simon J. and Jeffrey K. Uhlmann (1997). “New extension of the Kalman filter to nonlinear systems”. In: Signal Processing, Sensor Fusion, and Target Recognition VI. Ed. by Ivan Kadar. Vol. 3068. International Society for Optics and Photonics. SPIE, pp. 182–193. doi: 10.1117/12.280797. url: https://doi.org/10.1117/12.280797. Wan, E.A. and R. Van Der Merwe (2000). “The unscented Kalman filter for nonlinear estimation”. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp. 153–158. doi: 10.1109/ASSPCC.2000.882463. Hodrick, Robert J. and Edward C. Prescott (1997). “Postwar U.S. Business Cycles: An Empirical Investigation”. In: Journal of Money, Credit and Banking 29.1, pp. 1–16. issn: 00222879, 15384616. url: http://www.jstor.org/stable/2953682 (visited on 11/30/2023). Cogley, Timothy and James M. Nason (1995). “Output Dynamics in Real-Business-Cycle Models”. In: The American Economic Review 85.3, pp. 492–511. issn: 00028282. url: http://www.jstor.org/stable/2118184 (visited on 12/11/2023). Baxter, Marianne and Robert G. King (1999). “Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series”. In: The Review of Economics and Statistics 81.4, pp. 575–593. issn: 00346535, 15309142. url: http://www.jstor.org/stable/2646708 (visited on 11/30/2023). Markowitz, Harry (1952). “Portfolio Selection”. In: The Journal of Finance 7.1, pp. 77–91. issn: 00221082, 15406261. url: http://www.jstor.org/stable/2975974 (visited on 12/04/2023). Fama, Eugene F. and James D. MacBeth (1973). “Risk, Return, and Equilibrium: Empirical Tests”. In: Journal of Political Economy 81.3, pp. 607–636. issn: 00223808, 1537534X. url: http://www.jstor.org/stable/1831028 (visited on 12/04/2023). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/119736 |
Available Versions of this Item
-
Efficient Estimation of Stochastic Parameters: A GLS Approach. (deposited 06 Jan 2024 21:08)
- Efficient Estimation of Stochastic Parameters: A GLS Approach. (deposited 16 Jan 2024 08:06) [Currently Displayed]