Chen, Jia and Cui, Guowei and Sarafidis, Vasilis and Yamagata, Takashi (2025): IV Estimation of Heterogeneous Spatial Dynamic Panel Models with Interactive Effects.
![]() |
PDF
MPRA_paper_123497.pdf Download (956kB) |
Abstract
This paper develops a Mean Group Instrumental Variables (MGIV) estimator for spatial dynamic panel data models with interactive effects, under large N and T asymptotics. Unlike existing approaches that typically impose slope-parameter homogeneity, MGIV accommodates cross-sectional heterogeneity in slope coefficients. The proposed estimator is linear, making it computationally efficient and robust. Furthermore, it avoids the incidental parameters problem, enabling asymptotically valid inferences without requiring bias correction. The Monte Carlo experiments indicate strong finite-sample performance of the MGIV estimator across various sample sizes and parameter configurations. The practical utility of the estimator is illustrated through an application to regional economic growth in Europe. By explicitly incorporating heterogeneity, our approach provides fresh insights into the determinants of regional growth, underscoring the critical roles of spatial and temporal dependencies.
Item Type: | MPRA Paper |
---|---|
Original Title: | IV Estimation of Heterogeneous Spatial Dynamic Panel Models with Interactive Effects |
Language: | English |
Keywords: | Dynamic panel data, spatial interactions, heterogeneous slopes, interactive effects, latent common factors, instrumental variables, large N and T asymptotics. |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C33 - Panel Data Models ; Spatio-temporal Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C55 - Large Data Sets: Modeling and Analysis O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O47 - Empirical Studies of Economic Growth ; Aggregate Productivity ; Cross-Country Output Convergence |
Item ID: | 123497 |
Depositing User: | Professor Vasilis Sarafidis |
Date Deposited: | 12 Feb 2025 15:35 |
Last Modified: | 12 Feb 2025 15:35 |
References: | Ahn, S.C., Horenstein, A.R. (2013). Eigenvalue Ratio Test for the Number of Factors. Econometrica, 81(3), 1203–1227. Alvarez, J., Arellano, M. (2003). The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators. Econometrica, 71(4), 1121–1159. Aquaro, M., Bailey, N., Pesaran, M.H. (2015). Estimation and inference for spatial models with heterogeneous coefficients: An application to US houseprices. Journal of Applied Econometrics, 36(1), 18–44. Audretsch, D.B., Feldman, M.P. (2004). Knowledge Spillovers and the Geography of Innovation. Handbook of Regional and Urban Economics, 4, Ch. 61, 2713–2739. Autant-Bernard, C., LeSage, J.P. (2011). Quantifying Knowledge Spillovers Using Spatial Econometric Models. Journal of Regional Science, 51(3), 471–496. Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135–171. Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4), 1229–1279. Bai, J., Ng, S. (2002). Determining the Number of Factors in Approximate Factor Models. Econometrica, 70(1), 191–221. Bai, J., Li, K.P. (2021). Spatial panel data models with common shocks. Journal of Econometrics, 224(1), 134–160. Benos, N., Karagiannis, S., Karkalakos, S. (2015). Proximity and growth spillovers in European regions: The role of geographical, economic and technological linkages Journal of Macroeconomics, 43, 124–139. Botazzi, L., Peri, G. (2003). Innovation and spillovers in regions: Evidence from European patent data. European Economic Review, 47(4), 687–710. Bramoullé, Y., Djebbari, H., Fortin, B. (2009). Identification of Peer Effects Through Social Networks. Journal of Econometrics, 150(1), 41–55. Chen, J., Shin, Y., Zheng, C. (2022). Estimation and inference in heterogenous spatial panel data models with a multifactor error structure. Journal of Econometrics, 229(1), 55-79. Case, S. (1991). Spatial patterns in household demand. Econometrica, 59, 953–965. Chudik, A., Pesaran, H. M. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics, 188(2), 393–420. Cui, G., Norkute, M., Sarafidis, V., Yamagata, T. (2022). Two-Stage Instrumental Variable Estimation of Linear Panel Data Models with Interactive Effects. Econometrics Journal, 25(2), 340–361. Cui, G., Sarafidis, V., Yamagata, T. (2023). IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude Toward Risk. Econometrics Journal, 26(2), 124–146. Debarsy, N., LeSage, J.P., Pace, R.K. (2012). The interpretation and presentation of results in spatial econometrics. The Review of Regional Studies, 42(2), 107–142. De Paula, Á. (2017). Econometrics of Network Models. In B. Honore, A. Pakes, M. Piazzesi, and L. Samuelson (Eds.), Advances in Economics and Econometrics: Theory and Applications, Cambridge University Press. De Paula, Á., Rasul, I., Souza, P. C.L. (2024). Estimation and Selection of Spatial Weight Matrix in a Spatial Lag Model. The Review of Economic Studies, forthcoming. De Vos, I., Everaert, G. (2021). Bias-Corrected Common Correlated Effects Pooled Estimation in Dynamic Panels. Journal of Business & Economic Statistics, 39(1), 294–306. De Vos, I., Everaert, G., Sarafidis, V. (2024). A Method to Evaluate the Rank Condition for CCE Estimators. Econometric Reviews, 43(2-4), 123–155. Di Vaio, G., Zeira, J., Battisti, M. (2014). A new look at global growth convergence and divergence. VoxEU, 9 Jan. 2014. Higgins, H., Martellosio, F. (2023). Shrinkage estimation of network spillovers with factor structured errors. Journal of Econometrics, 233(1), 66–87. Lam, C., Souza, P.C.L. (2020). Shrinkage estimation of network spillovers with factor structured errors. Journal of Business & Economic Statistics, 38(3), 693–710. Lee, L-F., Yu, J. (2015). Spatial Panel Data Models. In B. Baltagi (Eds.), The Oxford Handbook of Panel Data, Ch. 12, 363–401. Elhorst, P., (2014). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels, Springer. Elhorst, P. (2021). Spatial panel models and common factors. In M. Fischer, P. Nijkamp (Eds.) Handbook of Regional Science, Springer, Berlin, Heidelberg. Ch. 12, 2141–2159. Elhorst, P., Tziolas, I., Tan, C., Milionis, P. (2024). The distance decay effect and spatial reach of spillovers. Journal of Geographical Systems, 26, 265–289. Ertur, C., Coch, W. (2007). Growth, technological interdependence and spatial externalities: theory and evidence. Journal of Applied Econometrics, 22(6), 1033–1062. Funke, M., Niebuhr, A. (2005). Regional Geographic Research and Development Spillovers and Economic Growth: Evidence from West Germany Regional Studies, 39(1), 143–153. Hahn, J., Kuersteiner, G. (2002). Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both n and T Are Large Econometrica, 70(4), 1639–1657. Harding, M., Lamarche, C. (2011). Least squares estimation of a panel data model with multifactor error structure and endogenous covariates. Economics Letters, 111(3), 197–199. Hamermesh, D. S. (2015). Labor Demand and the Source of Adjustment Costs. The Economic Journal, 105(430), 620–634. Hansen, C. (2007). Asymptotic properties of a robust variance matrix estimator for panel data when T is large. Journal of Econometrics, 141(2), 597–620. Hayakawa, K. (2015). The Asymptotic Properties Of The System Gmm Estimator In Dynamic Panel Data Models When Both N And T Are Large. Econometric Theory, 31(3), 647–667. Jappelli, T., Pistaferri, L. (2017). Time, Habits, and Consumer Durables. The Economics of Consumption: Theory and Evidence, Ch. 13, 234–256, Oxford University Press. Jing, Z., Elhorst, J.P., Jakobs, J., de Haan J., (2018). The propagation of financial turbulence: Interdependence, spillovers, and direct and indirect effects. Empirical Economics, 55, 169–192. Juodis, A., Sarafidis, V. (2018). Fixed T dynamic panel data estimators with multifactor errors. Econometric Reviews, 37(8), 893–929. Juodis, A., Sarafidis, V. (2022). An Incidental Parameters Free Inference Approach for Panels with Common Factors. Journal of Econometrics, 229(1), 19–54. Islam, N. (1995). Growth Empirics: A Panel Data Approach. The Quarterly Journal of Economics, 110(4), 1127–1170. Kapoor, M., Kelejian, H.H., Prucha, I.R. (2007). Panel data models with spatially correlated error components. Journal of Econometrics, 140(1), 97–130. Kelejian, H.H., Prucha, I.R. (2001). On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics, 104(2), 219–257. Kelejian, H.H., Prucha, I.R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157, 53–67. Kelejian, H., Piras, G. (2017). Spatial Econometrics, 1st edn. London: Academic Press. Korniotis, G.M. (2010). Estimating Panel Models With Internal and External Habit Formation Journal of Business & Economic Statistics, 28(1), 145–158. Kripfganz, S., Sarafidis, V. (2021). Instrumental Variable Estimation of Large-T Panel Data Models with Common Factors. Stata Journal, 21(3), 1–28. Kripfganz, S., Sarafidis, V. (2025). Estimating Spatial Dynamic Panel Data Models with Unobserved Common Factors in Stata Journal of Statistical Software, forthcoming. Lee, L-F., Yu, J. (2014). Efficient GMM estimation of spatial dynamic panel data models with fixed effects Journal of Econometrics, 180(2), 174–197. Lee, L-F., Yu, J. (2015). Spatial Panel Data Models. In B. Baltagi (Eds.), The Oxford Handbook of Panel Data, Ch. 12, 363–401. LeSage, J.P., Pace, R.K. (2009). Introduction to Spatial Econometrics. CRC Press. LeSage, J.P., Chih, Y-Y. (2016). Interpreting Heterogeneous Coefficient Spatial Autoregressive Panel Models. Economics Letters, 142, 1–5. LeSage, J.P., Vance, C., Chih, Y.Y. (2017). A Bayesian heterogeneous coefficients spatial autoregressive panel data model of retail fuel duopoly pricing. Regional Science and Urban Economics, 62, 46–55. Manski, C. (1993). Identification of endogenous social effects: The reflection problem. Review of Economic Studies, 60(3), 531–542. Moon, R.H., Weidner, M. (2017). Dynamic Linear Panel Regression Models With Interactive Fixed Effects. Econometric Theory, 33(1), 158–195. Nickell, S. (1981). Biases in Dynamic Models with Fixed Effects. Econometrica, 49(6), 1417–1426. Norkute, M., Sarafidis, V., Yamagata, T., Cui, G. (2021). Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure. Journal of Econometrics, 220(2), 416–446. Ozyurt, S., Dees, S. (2018). Regional Dynamics of Economic Performance in the EU: To What Extent Do Spatial Spillovers Matter? REGION, 5(3), 75–96. Pesaran, M.H. (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica, 74(4), 967–1012. Pesaran, M.H., Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics, 68(1), 79–113. Phillips, P.C.B., Sul, D. (2007). Bias in Dynamic Panel Estimation with Fixed Effects, Incidental Trends and Cross Section Dependence. Journal of Econometrics, 137(1), 162–188. Ramajo, J., Márquez, M.A., Hewings, G.J.D., Salinas, M.M. (2008). Spatial heterogeneity and interregional spillovers in the European Union: Do cohesion policies encourage convergence across regions? European Economic Review, 52(3), 551–567. Robertson, D., Symons, J. (1992). Some Strange Properties of Panel Data Estimators. Journal of Applied Econometrics, 7(2), 175–189. Rodríguez-Pose, A., Crescenzi, R. (2008). Research and Development, Spillovers, Innovation Systems, and the Genesis of Regional Growth in Europe. Regional Studies, 42(1), 51–67. Sargent, T., Sims, C. (1977). Business cycle modeling without pretending to have too much a priori economic theory. MIMEO. Sarafidis, V., Wansbeek, T. (2012). Cross-Sectional Dependence in Panel Data Analysis. Econometric Reviews, 31(5), 483–531. Sarafidis, V., Wansbeek, T. (2021). Celebrating 40 years of panel data analysis: Past, present and future. Journal of Econometrics, 220(2), 215–226. Shi, W., Lee, L.F. (2017). Spatial dynamic panel data models with interactive fixed effects. Journal of Econometrics, 197(2), 323–347. Yu, J., de Jong, R., Lee, L-F. (2008). Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. Journal of Econometrics, 146(1), 118–134. Yu, J., de Jong, R., Lee, L-F. (2012). Estimation for spatial dynamic panel data with fixed effects: the case of spatial cointegration. Journal of Econometrics, 167(1), 16–37. Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data. The MIT Press, Cambridge, Massachusetts. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/123497 |