ALAMI CHENTOUFI, Reda (2025): Penalized Convex Estimation in Dynamic Location-Scale models.
This is the latest version of this item.
![]() |
PDF
MPRA_paper_124750.pdf Download (588kB) |
Abstract
This paper introduces a two‑step convex estimator for dynamic location–scale models. Step 1 relies on a $\sqrt{T}$-consistent preliminary estimator. Step 2 minimizes an adaptive $L^1$‑penalized weighted least squares (WLS) criterion, yielding a sparse estimator. The objective is convex, avoiding the local‑optima issues of non‑convex optimizations. Consistency, asymptotic distribution, and model‑selection consistency are proven. Simulations confirm finite‑sample performance. A financial data set illustrates practical utility.
Item Type: | MPRA Paper |
---|---|
Original Title: | Penalized Convex Estimation in Dynamic Location-Scale models |
English Title: | Penalized Convex Estimation in Dynamic Location-Scale models |
Language: | English |
Keywords: | Weighted LSE; Adaptive LASSO estimation; variable selection; GARCH models; ARMA models; Location–scale dynamics |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 124750 |
Depositing User: | Mr Reda ALAMI CHENTOUFI |
Date Deposited: | 16 May 2025 10:42 |
Last Modified: | 16 May 2025 10:42 |
References: | Adamek, R., Smeekes, S., Wilms, I., 2023. Lasso inference for high-dimensional time series. Journal of Econometrics 235, 1114–1143. Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723. Akaike, H., 1998. Information theory and an extension of the maximum likelihood principle, in: Parzen, E., Tanabe, K., Kitagawa, G. (Eds.), Selected Papers of Hirotugu Akaike. Springer, pp. 199–213. Aknouche, A., Francq, C., 2023. Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models. Journal of Econometrics 237, 105174. Andrews, D.W.K., 1999. Estimation when a parameter is on a boundary. Econometrica 67, 1341–1383. Basu, S., Michailidis, G., 2015. Regularized estimation in sparse high-dimensional time series models. The Annals of Statistics 43, 1535–1567. Bhattacharjee, M., Chakraborty, N., Koul, H.L., 2023. Weighted l1-penalized corrected quantile regression for high-dimensional temporally dependent measurement errors. Journal of Time Series Analysis 44, 442–473. Billingsley, P., 1961. The lindeberg-levy theorem for martingales. Proceedings of the American Mathematical Society 12, 788–792. Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–327. Bunea, F., Tsybakov, A., Wegkamp, M., 2007. Sparsity oracle inequalities for the lasso. Electronic Journal of Statistics 1, 169–194. Chan, K.S., Chen, K., 2011. Subset arma selection via the adaptive lasso. Statistics and Its Interface 4, 197–205. Chan, N.H., Ling, S., Yau, C.Y., 2020. Lasso-based variable selection of arma models. Statistica Sinica 30, 1925–1948. Chan, N.H., Yau, C.Y., Zhang, R.M., 2015. Lasso estimation of threshold autoregressive models. Journal of Econometrics 189, 285–296. Davis, R.A., Knight, K., Liu, J., 1992. M-estimation for autoregressions with infinite variance. Stochastic Processes and Their Applications 40, 145–180. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regression. The Annals of Statistics 32, 407–499. Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50, 987–1007. Fan, J., Li, R., 2001. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association 96, 1348–1360. Fan, J., Peng, H., 2004. Nonconcave penalized likelihood with a diverging number of parameters. The Annals of Statistics 32, 928–961. Francq, C., Thieu, 2019. Qml inference for volatility models with covariates. Econometric Theory 35, 37–72. Francq, C., Zakoıan, J.M., 2018. Estimation risk for the var of portfolios driven by semi-parametric multivariate models. Journal of Econometrics 205, 381–401. Francq, C., Zakoıan, J.M., 2019. GARCH Models: Structure, Statistical Inference and Financial Applications. John Wiley & Sons. Fu, W., Knight, K., 2000. Asymptotics for lasso-type estimators. The Annals of Statistics 28, 1356–1378. Knight, K., 1999. Epi-convergence in distribution and stochastic equi-semicontinuity. Unpublished manuscript 37, 14. Kock, A.B., 2016. Consistent and conservative model selection with the adaptive lasso in stationary and nonstationary autoregressions. Econometric Theory 32, 243–259. Loh, P.L., 2017. Statistical consistency and asymptotic normality for high-dimensional robust m-estimators. Annals of Statistics 45, 866–896. Nardi, Y., Rinaldo, A., 2011. Autoregressive process modeling via the lasso procedure. Journal of Multivariate Analysis 102, 528–549. Nielsen, H.B., Rahbek, A., 2024. Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space. The Econometrics Journal 27, 107–125. Poignard, B., Fermanian, J.D., 2021. High-dimensional penalized arch processes. Econometric Reviews 40, 86–107. Rockafellar, R.T., 1970. Convex Analysis. Princeton University Press. Rockafellar, R.T., Wets, R.J.B., 2009. Variational analysis. volume 317. Springer Science & Business Media. Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6, 461–464. Schweikert, K., 2022. Oracle efficient estimation of structural breaks in cointegrating regressions. Journal of Time Series Analysis 43, 83–104. Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 58, 267–288. Wang, H., Li, G., Tsai, C.L., 2007. Regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 63–78. Wang, Z., Liu, H., Zhang, T., 2014. Optimal computational and statistical rates of convergence for sparse nonconvex learning problems. Annals of Statistics 42, 2164–2201. Zhang, C.H., Huang, J., 2008. The sparsity and bias of the lasso selection in high-dimensional linear regression. The Annals of Statistics 36, 1567–1594. Zou, H., 2006. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101, 1418–1429. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/124750 |
Available Versions of this Item
-
Penalized Convex Estimation in Dynamic Location-Scale models. (deposited 14 Jan 2025 09:45)
- Penalized Convex Estimation in Dynamic Location-Scale models. (deposited 16 May 2025 10:42) [Currently Displayed]