Polbin, Andrey and Shumilov, Andrei (2025): Наукастинг и прогнозирование ВВП России и его компонентов с помощью квантильных моделей. Forthcoming in: Applied Econometrics (2025)
![]() |
PDF
MPRA_paper_125440.pdf Download (2MB) |
Abstract
The paper examines the quality of probabilistic nowcasts and short-term forecasts of the Russian GDP and its components in constant prices (consumption, investment, exports and imports) based on the standard quantile regression model and its shrinkage modifications, aimed at reducing the risk of overfitting (averages of quantile forecasts, partial quantile regression, regressions with regularization, Bayesian quantile regression). We find that quantile models with predictors are superior to autoregressive and OLS models in terms of CRPS (Continuous Ranked Probability Score) metrics in nowcasting exercises for investment and consumption. When forecasting 1-4 quarters ahead, shrinkage models yield the most accurate forecasts of GDP and consumption distributions at all horizons. For investment and imports, shrinkage methods turn out to be the best performers at three forecast horizons out of four. There is no single shrinkage model, which would provide the best probabilistic forecasts of macroeconomic variables much more often than others.
Item Type: | MPRA Paper |
---|---|
Original Title: | Наукастинг и прогнозирование ВВП России и его компонентов с помощью квантильных моделей |
English Title: | Nowcasting and forecasting Russian GDP and its components using quantile models |
Language: | Russian |
Keywords: | macroeconomic forecasting; nowcasting; probabilistic forecast; quantile regressions; shrinkage; Bayesian methods; Russia |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E1 - General Aggregative Models > E17 - Forecasting and Simulation: Models and Applications E - Macroeconomics and Monetary Economics > E2 - Consumption, Saving, Production, Investment, Labor Markets, and Informal Economy > E27 - Forecasting and Simulation: Models and Applications F - International Economics > F1 - Trade > F17 - Trade Forecasting and Simulation |
Item ID: | 125440 |
Depositing User: | Andrei Shumilov |
Date Deposited: | 31 Jul 2025 12:48 |
Last Modified: | 31 Jul 2025 12:48 |
References: | Гареев М.Ю., Полбин А.В. (2022). Наукастинг: оценка изменения ключевых макроэкономических показателей с использованием методов машинного обучения. Вопросы экономики, (8), 133-157. DOI: 10.32609/0042-8736-2022-8-133-157. Демешев Б., Малаховская О. (2016). Макроэкономическое прогнозирование с помощью BVAR Литтермана. Экономический журнал Высшей школы экономики, 20 (4), 691-710. Казакова М., Фокин Н. (2024). Тестирование прогнозных свойств различных подходов к интервальному прогнозированию (на примере инфляции в России). Вопросы статистики, 31 (5), 23-40. DOI: 10.34023/2313-6383-2024-31-5-23-40. Макеева Н.М., Станкевич И.П. (2022). Наукастинг элементов использования ВВП России. Экономический журнал Высшей школы экономики, 26 (4), 598-622. DOI: 10.17323/1813-8691-2022-26-4-598-622. Полбин А.В., Шумилов А.В. (2023). Прогнозирование инфляции в России с помощью TVP-модели с байесовским сжатием параметров. Вопросы статистики, 30 (4), 22-32. DOI: 10.34023/2313-6383-2023-30-4-22-32. Полбин А.В., Шумилов А.В. (2024). Прогнозирование основных российских макроэкономических показателей с помощью TVP-модели с байесовским сжатием параметров. MPRA Paper, 120170. Поршаков А.С., Пономаренко А.А., Синяков А.А. (2016). Оценка и прогнозирование ВВП России с помощью динамической факторной модели. Журнал Новой Экономической Ассоциации, 2 (30), 60-76. DOI: 10.31737/2221-2264-2016-30-2-3. Станкевич И. (2020). Сравнение методов наукастинга макроэкономических индикаторов на примере российского ВВП. Прикладная эконометрика, 59, 113-127. DOI: 10.22394/1993‑7601‑2020‑59‑113-127. Станкевич И. (2023). Применение MIDAS-моделей с марковским переключением для наукастинга ВВП и его компонентов. Прикладная эконометрика, 70, 122-143. DOI: 10.22394/1993‑7601‑2023‑70‑122‑143. Adrian T., Boyarchenko N., Giannone D. (2019). Vulnerable growth. American Economic Review, 109 (4), 1263-1289. DOI: 10.1257/aer.20161923. Adrian T., Grinberg F., Liang N., Malik S., Yu J. (2018). The term structure of growth-at-risk. IMF Working Paper, 18/180. Brownlees C., Souza A.B.M. (2021). Backtesting global growth-at-risk. Journal of Monetary Economics, 118, 312-330. DOI: 10.1016/j.jmoneco.2020.11.003. Carriero A., Clark T.E., Marcellino M. (2022a). Specification choices in quantile regression for empirical macroeconomics. Federal Reserve Bank of Cleveland Working Paper, 22-25. Carriero A., Clark T.E., Marcellino M. (2022b). Nowcasting tail risk to economic activity at a weekly frequency. Journal of Applied Econometrics, 37 (5), 843-866. DOI: 10.1002/jae.2903. Carriero A., Clark T.E., Marcellino M. (2024). Capturing macro‐economic tail risks with Bayesian vector autoregressions. Journal of Money, Credit and Banking, 56 (5), 1099-1127. DOI: 10.1111/jmcb.13121. Carvalho C.M., Polson N.G., Scott J.G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97 (2), 465-480. DOI: 10.1093/biomet/asq017. Clark T.E., Huber F., Koop G., Marcellino M., Pfarrhofer M. (2024). Investigating growth-at-risk using a multicountry nonparametric quantile factor model. Journal of Business & Economic Statistics, 42 (4), 1302–1317. DOI: 10.1080/07350015.2024.2310020. Giacomini R., Komunjer I. (2005). Evaluation and combination of conditional quantile forecasts. Journal of Business & Economic Statistics, 23 (4), 416-431. DOI: 10.1198/073500105000000018. Giglio S., Kelly B., Pruitt S. (2016). Systemic risk and the macroeconomy: An empirical evaluation. Journal of Financial Economics, 119 (3), 457-471. DOI: 10.1016/j.jfineco.2016.01.010. Gneiting T., Raftery A.E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102 (477), 359-378. DOI: 10.1198/016214506000001437. Gneiting T., Ranjan R. (2011). Comparing density forecasts using threshold- and quantile-weighted scoring rules. Journal of Business & Economic Statistics, 29 (3), 411-422. DOI: 10.1198/jbes.2010.08110. Koenker R., Bassett G. (1978). Regression Quantiles. Econometrica, 46 (1), 33-50. DOI: 10.2307/1913643. Kohns D., Szendrei T. (2024). Horseshoe prior Bayesian quantile regression. Journal of the Royal Statistical Society Series C: Applied Statistics, 73 (1), 193-220. DOI: 10.1093/jrsssc/qlad091. Kozumi H., Kobayashi G. (2011). Gibbs sampling methods for Bayesian quantile regression. Journal of Statistical Computation and Simulation, 81 (11), 1565-1578. DOI: 10.1080/00949655.2010.496117. Mitchell J., Poon A., Mazzi G.L. (2022). Nowcasting Euro area GDP growth using Bayesian quantile regression. In: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, 51-72. Emerald Publishing Limited. DOI: 10.1108/S0731-90532021000043A004. Tibshirani R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58 (1), 267-288. DOI: 10.1111/j.2517-6161.1996.tb02080.x. Zou H., Hastie T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67 (2), 301-320. DOI: 10.1111/j.1467-9868.2005.00503.x. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/125440 |