Lanne, Markku and Luoto, Jani and Saikkonen, Pentti (2010): Optimal Forecasting of Noncausal Autoregressive Time Series.
Preview |
PDF
MPRA_paper_23648.pdf Download (345kB) | Preview |
Abstract
In this paper, we propose a simulation-based method for computing point and density forecasts for univariate noncausal and non-Gaussian autoregressive processes. Numerical methods are needed to forecast such time series because the prediction problem is generally nonlinear and no analytic solution is therefore available. According to a limited simulation experiment, the use of a correct noncausal model can lead to substantial gains in forecast accuracy over the corresponding causal model. An empirical application to U.S. inflation demonstrates the importance of allowing for noncausality in improving point and density forecasts.
Item Type: | MPRA Paper |
---|---|
Original Title: | Optimal Forecasting of Noncausal Autoregressive Time Series |
Language: | English |
Keywords: | Noncausal autoregression; density forecast; inflation |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E31 - Price Level ; Inflation ; Deflation C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 23648 |
Depositing User: | Markku Lanne |
Date Deposited: | 06 Jul 2010 17:09 |
Last Modified: | 27 Sep 2019 20:39 |
References: | Andrews, B. R.A. Davis, and F.J. Breidt (2006). Maximum likelihood estimation for all-pass time series models. Journal of Multivariate Analysis 97, 1638�-1659. Breidt, F.J., R.A. Davis, K.S. Lii, and M. Rosenblatt (1991). Maximum likelihood estimation for noncausal autoregressive processes. Journal of Multivariate Analysis 36, 175�-198. Breidt, F.J., R.A. Davis, and A.A. Trindade (2001). Least absolute deviation estimation for all-pass time series models. The Annals of Statistics 29, 919�-946. Breidt, F.J. and N.-J. Hsu (2005). Best mean square prediction for moving averages. Statistica Sinica, 15, 427-446. Clements, M.P., and J. Smith (1999). A Monte Carlo study of the forecasting performance of empirical SETAR models. Journal of Applied Econometrics 14, 123�-141. Diebold, F.X., T. Gunther, and A. Tay (1998). Evaluating density forecasts with applications to �nancial risk management. International Economic Review 39, 863-�883. Diebold, F.X., and R.S. Mariano (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics 13, 253�-263. Fisher, J.D.M., C.T. Liu, and R. Zhou (2002). When can we forecast infl�ation? Economic Perspectives 1Q/2002, Federal Reserve Bank of Chicago, 30�-42. Huang, J. and Y. Pawitan (2000). Quasi-likelihood estimation of noninvertible moving average processes. Scandinavian Journal of Statistics 27, 689-�710. Lanne, M., and P. Saikkonen (2008). Modeling expectations with noncausal autoregressions. HECER Discussion Paper No. 212. Lanne, M., and P. Saikkonen (2009). Noncausal vector autoregression. Bank of Finland Discussion Paper 18/2009. Lii, K.-S. and M. Rosenblatt (1996). Maximum likelihood estimation for non-Gaussian nonminimum phase ARMA sequences. Statistica Sinica 6, 1-22. Rosenblatt, M. (2000). Gaussian and non-Gaussian linear time series and random �elds. Springer-Verlag, New York. Stock, J.H., and M.W. Watson (2008). Phillips curve in�ation Forecasts. NBER Working Paper No. W14322. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/23648 |