Kukushkin, Nikolai S. (2010): On the existence of most-preferred alternatives in complete lattices.
Preview |
PDF
MPRA_paper_27504.pdf Download (160kB) | Preview |
Abstract
If a preference ordering on a complete lattice is quasisupermodular, or just satisfies a rather weak analog of the condition, then it admits a maximizer on every subcomplete sublattice if and only if it admits a maximizer on every subcomplete subchain
Item Type: | MPRA Paper |
---|---|
Original Title: | On the existence of most-preferred alternatives in complete lattices |
Language: | English |
Keywords: | lattice optimization; quasisupermodularity |
Subjects: | D - Microeconomics > D1 - Household Behavior and Family Economics > D11 - Consumer Economics: Theory C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis |
Item ID: | 27504 |
Depositing User: | Nikolai S. Kukushkin |
Date Deposited: | 17 Dec 2010 00:11 |
Last Modified: | 08 Oct 2019 05:55 |
References: | Agliardi, E., 2000. A generalization of supermodularity. Economics Letters 68, 251--254. Gillies, D.B., 1959. Solutions to general non-zero-sum games. In: Tucker,~A.W., and R.D.~Luce (Eds.) Contributions to the Theory of Games 4 (Annals of Mathematical Studies 40). Princeton University Press, 47--85. Kukushkin, N.S., 2008a. Maximizing an interval order on compact subsets of its domain. Mathematical Social Sciences 56, 195--206. Kukushkin, N.S., 2008b. Monotonicity Conditions, Monotone Selections, and Equilibria. Russian Academy of Sciences, Dorodnicyn Computing Center, Moscow. Kukushkin, N.S., 2009. Another characterization of quasisupermodularity. Munich Personal RePEc Archive Paper. Available at http://mpra.ub.uni-muenchen.de/18237/ Li Calzi, M., and A.F. Veinott, Jr., 1992. Subextremal functions and lattice programming. Unpublished manuscript. Available at http://ideas.repec.org/p/wpa/wuwpge/0509001.html Milgrom, P., and C. Shannon, 1994. Monotone comparative statics. Econometrica 62, 157--180. Shannon, C., 1995. Weak and strong monotone comparative statics. Economic Theory 5, 209--227. Smith, T.E., 1974. On the existence of most-preferred alternatives. International Economic Review 15, 184--194. Veinott, A.F., Jr., 1989. Lattice Programming. Unpublished lectures. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/27504 |