Mullen, Katharine M. and Ardia, David and Gil, David L. and Windover, Donald and Cline, James (2009): DEoptim: An R Package for Global Optimization by Differential Evolution.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_27878.pdf Download (3MB) | Preview |
Abstract
This article describes the R package DEoptim which implements the differential evolution algorithm for the global optimization of a real-valued function of a real-valued parameter vector. The implementation of differential evolution in DEoptim interfaces with C code for efficiency. The utility of the package is illustrated via case studies in fitting a Parratt model for X-ray reflectometry data and a Markov-Switching Generalized AutoRegressive Conditional Heteroskedasticity (MSGARCH) model for the returns of the Swiss Market Index.
Item Type: | MPRA Paper |
---|---|
Original Title: | DEoptim: An R Package for Global Optimization by Differential Evolution |
Language: | English |
Keywords: | global optimization; evolutionary algorithm; differential evolution; R software |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C80 - General |
Item ID: | 27878 |
Depositing User: | David Ardia |
Date Deposited: | 10 Jan 2011 17:11 |
Last Modified: | 27 Sep 2019 10:07 |
References: | Als-Nielsen J, McMorrow D (2001). Elements of Modern X-ray Physics. Wiley. Ardia D (2008). Financial Risk Management with Bayesian Estimation of GARCH Models: Theory and Applications, volume 612 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, Germany. ISBN 978-3-540-78656-6. doi:10.1007/978-3-540-78657-3. URL http://www.springer.com/economics/econometrics/book/978-3-540-78656-6. Ardia D, Mullen K (2009). DEoptim: Differential Evolution Optimization in R. R package version 2.00-04, URL http://CRAN.R-project.org/package=DEoptim. Bjö̈rck M, Andersson G (2007). “GenX: An Extensible X-ray Reflectivity Refinement Program Utilizing Differential Evolution.” Journal of Applied Crystallography, 40(6), 1174–1178. Börner J, Higgins SI, Kantelhardt J, Scheiter S (2007). “Rainfall or Price Variability: What Determines Rangeland Management Decisions? A Simulation-Optimization Approach to South African Savanas.” Agricultural Economics, 37(2–3), 189–200. Bowen DK, Tanner BK (2006). X-Ray Metrology in Semiconductor Manufacturing. CRC. Cao R, Vilar JM, Devia A (2009). “Modelling Consumer Credit Risk via Survival Analysis.” Statistics & Operations Research Transactions, 33(1), 3–30. Dueker MJ (1997). “Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility.” Journal of Business & Economic Statistics, 15(1), 26–34. Hamilton JD (1989). “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.” Econometrica, 57(2), 357–384. Higgins SI, Kantelhardt J, Scheiter S, Boerner J (2007). “Sustainable Management of Extensively Managed Savanna Rangelands.” Ecological Economics, 62(1), 102–114. Holland JH (1975). Adaptation in Natural Artificial Systems. University of Michigan Press, Ann Arbor. Klaassen F (2002). “Improving GARCH Volatility Forecasts with Regime-Switching GARCH.” Empirical Economics, 27(2), 363–394. Lamoureux CG, Lastrapes WD (1990). “Persistence in Variance, Structural Change, and the GARCH Model.” Journal of Business & Economic Statistics, 8(2), 225–243. Mitchell M (1998). An Introduction to Genetic Algorithms. The MIT Press. Opsina Arango JD (2009). Estimacion de un Modelo de Difusion con Saltos con Distribucion de Error Generalizada Asimetrica usando Algorithmos Evolutivos. Master’s thesis, Universidad Nacional de Colombia. Parratt LG (1954). “Surface Studies of Solids by Total Reflection of X-Rays.” Physical Review, 95(2), 359–369. Price KV, Storn RM, Lampinen JA (2006). Differential Evolution: A Practical Approach to Global Optimization. Springer-Verlag, Berlin, Germany. ISBN 3540209506. R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org. Storn R, Price K (1997). “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.” Journal of Global Optimization, 11(4), 341–359. Taylor M, Wall J, Loxley N, Wormington M, Lafford T (2001). “High resolution X-ray Diffraction Using a High Brilliance Source, with Rapid Data Analysis by Auto-fitting.” Materials Science and Engineering B, 80(1-3), 95–98. Wormington M, Panaccione C, Matney KM, Bowen DK (1999). “Characterization of Structures from X-ray Scattering Data Using Genetic Algorithms.” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1761), 2827–2848. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/27878 |
Available Versions of this Item
-
DEoptim: An R Package for Global Optimization by Differential Evolution. (deposited 31 Mar 2010 05:59)
- DEoptim: An R Package for Global Optimization by Differential Evolution. (deposited 10 Jan 2011 17:11) [Currently Displayed]