Francisco, Ramirez (2011): Modelos de Estimación de la Brecha de Producto: Aplicación al PIB de la República Dominicana.
Preview |
PDF
MPRA_paper_38886.pdf Download (348kB) | Preview |
Abstract
This document compares the proprieties of different empirical methodologies to estimate the output gap and the potential output (non-observable variables of interest to the design of monetary policy and macroeconomic analysis) using Dominican Republic as a case of study. The output gap and potential output are estimated with three different methods: univariated filters, non-observable variables methodology; and structural autorregresive vector (SVAR). Also, using all measures of output gap, a Phillip’s curve is estimated with each measure to evaluate the usability of these in macroeconometric models of policy analysis and forecast.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modelos de Estimación de la Brecha de Producto: Aplicación al PIB de la República Dominicana. |
English Title: | Models for Estimating the Output Gap: Application to the GDP of Dominican Republic. |
Language: | Spanish |
Keywords: | Potential Output; Unobserved Component Model; Structural VAR |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E37 - Forecasting and Simulation: Models and Applications |
Item ID: | 38886 |
Depositing User: | Francisco A. Ramírez |
Date Deposited: | 30 May 2012 00:51 |
Last Modified: | 08 Oct 2019 14:32 |
References: | 1.Basu, S; J. G. Fernald. (2009) What Do We Know (And Not Know) About Potential Output? Federal Reserve Bank of St. Louis Review. Julio – Agosto, 91(4), pp.187-213. 2.Baxter, M.; R. King. (1999). Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series. The Review of Economics and Statistics, 81 (4): 575-593. 3.Blanchard, O.; D. Quah. (1989). The Dynamic Effects of Aggregate Demand and Supply Disturbances. American Economic Review, 79(4):655-673. 4.Christiano, L.; T. Fitzgerald. (1999). The Band Pass Filter. National Bureau of Economic Research, WP 7257. 5.Clarida, R.; J. Gali. (1994). Sources of Real Exchange Rate Fluctuations: How Important are Nominal Shocks?. National Bureau of Economic Research. WP 4658. 6.Cruz, A.; M. Francos. (2008). Estimaciones Alternativas del PIB Potencial en la República Dominicana. Unidad de Asesoría de Análisis Económico y Social, Ministerio de Economía, Planificación y Desarrollo. Texto de Discusión No. 11. 7.Espinal, J. (2009). Estimación del PIB Potencial Utilizando el Filtro de Kalman. Mimeo, Banco Central de la República Dominicana. 8. Guzmán, R.; M. Lizardo. (2002). Crecimiento Económico, Acumulación de Factores y Productividad en la República Dominicana (1950-2000). Serie de Estudios Económicos y Sociales, Banco Interamericano de Desarrollo. 9.Hamilton, J. (1994). Time Series Analysis. Princeton University Press. 10.Harvey,A.; Shephard,N. Structural Time Series Models. En Handbook of Statistics, Vol. 11. 1993 Elseiver. 11.Hodrick, R.; E. Prescott. (1997). Postwar U.S. Business Cycles: An Empirical Investigation. Journal of Money, Credit and Banking, 29(1): 1-16. 12.Kalman, R.E. (1960). A new Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82: 35-45. 13. Kichian, M. (1999). Measuring Potential Output within a State-Space Framework. Bank of Canada. WP 99-9. 14. Lim, D. (1976). On the Measurement of Capital Utilization in Less Developed Countries. Oxford Economic Papers, 28(1): 149-159. 15. Mishkin, F. (2007). Will Monetary Policy Become More of a Science? National Bureau of Economic Research, WP 13566. 16. Peña, D. (2005). Análisis de Series de Tiempo. Alianza Editorial. 17. Watson, M. (1986). Univariate Detrending Method with Stochastic Trends. Journal of Monetary Economics, 18 (1): 49-75. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/38886 |