Mishra, SK (2012): Construction of Pena’s DP2-based ordinal synthetic indicator when partial indicators are rank scores.
Preview |
PDF
MPRA_paper_39088.pdf Download (169kB) | Preview |
Abstract
The present study devises a computational scheme (and develops a FORTRAN 77 computer program) that may be appropriate to construct Pena’s DP2 (ordinal) synthetic indicator (Z) from the partial indicators (X) all of which are ordinal (ranking scores). An attempt has also been made to empirically apply the method (and the computer program) to obtain an ordinal synthetic indicator from a given ordinal data set.
Item Type: | MPRA Paper |
---|---|
Original Title: | Construction of Pena’s DP2-based ordinal synthetic indicator when partial indicators are rank scores |
Language: | English |
Keywords: | Ordinal data set; Pena’s DP2 synthetic indicator; ranking scores; Ordinal principal component analysis; Computer program; Fortran 77 |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C43 - Index Numbers and Aggregation C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis |
Item ID: | 39088 |
Depositing User: | Sudhanshu Kumar Mishra |
Date Deposited: | 29 May 2012 23:01 |
Last Modified: | 29 Sep 2019 05:39 |
References: | Mishra, S.K. (2006) “Global Optimization by Differential Evolution and Particle Swarm Methods Evaluation on Some Benchmark Functions”, MPRA, Munich. http://mpra.ub.uni-muenchen.de/1005/ Mishra, S.K. (2010) “The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization”, Journal of Quantitative Economics, 8(2): 165-200. http://www.jqe.co.in/journals/JQE_v8_n2_2010_p11.pdf Mishra, S.K. (2011) “A Comparative Study of Various Inclusive Indices and the Index Constructed by the Principal Component Analysis", IUP Journal of Computational Mathematics, 4(2): 7-26. Mishra, S.K. (2012-a) “A Note on Construction of Heuristically Optimal Pena’s Synthetic Indicators by the Particle Swarm Method of Global Optimization”, SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2028395 Mishra, S.K. (2012-b) “A Maximum Entropy Perspective of Pena’s Synthetic Indicators”, http://mpra.ub.uni-muenchen.de/37797 Montero, J.M., Chasco, C. and Larraz, B. (2010) “Building An Environmental Quality Index for A Big City: A Spatial Interpolation Approach Combined with A Distance Indicator”, Journal of Geographical Systems, 12(4): 435-459. Munda, G. and Nardo, M. (2005) “Constructing Consistent Composite Indicators: The Issue of Weights”, EUR 21834 EN, Institute for the Protection and Security of the citizen, European Commission, Luxembourg. Nayak, P. and Mishra, S.K. (2012) “Efficiency of Pena’s P2 Distance in Construction of Human Development Indices”, SSRN: http://ssrn.com/abstract=2066567 OECD (2003) “Composite Indicators of Country Performance: A Critical Assessment”, DST/IND(2003) 5, Paris. Pena, J.B. (1977) Problemas de la medición del bienestar y conceptos afines (Una aplicación al caso español). (Madrid: Instituto Nacional de Estadística (INE)). Somarriba, N. and Pena, B. (2009) “Synthetic Indicators of Quality of Life in Europe”, Social Indicators Research, 94(1): 115–133. Zarzosa, P. (1996) Aproximación a la medición del bienestar social. Secretariado de Publicaciones e intercambio científico, Universidad de Valladolid. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/39088 |