Logo
Munich Personal RePEc Archive

Maximum likelihood estimation and inference for approximate factor models of high dimension

Bai, Jushan and Li, Kunpeng (2012): Maximum likelihood estimation and inference for approximate factor models of high dimension.

This is the latest version of this item.

[thumbnail of MPRA_paper_42118.pdf]
Preview
PDF
MPRA_paper_42118.pdf

Download (642kB) | Preview

Abstract

An approximate factor model of high dimension has two key features. First, the idiosyncratic errors are correlated and heteroskedastic over both the cross-section and time dimensions; the correlations and heteroskedasticities are of unknown forms. Second, the number of variables is comparable or even greater than the sample size. Thus a large number of parameters exist under a high dimensional approximate factor model. Most widely used approaches to estimation are principal component based. This paper considers the maximum likelihood-based estimation of the model. Consistency, rate of convergence, and limiting distributions are obtained under various identification restrictions. Comparison with the principal component method is made. The likelihood-based estimators are more efficient than those of principal component based. Monte Carlo simulations show the method is easy to implement and an application to the U.S. yield curves is considered

Available Versions of this Item

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.