Chalabi, Yohan and Wuertz, Diethelm (2012): Portfolio optimization based on divergence measures.
Preview |
PDF
MPRA_paper_43332.pdf Download (762kB) | Preview |
Abstract
A new portfolio selection framework is introduced where the investor seeks the allocation that is as close as possible to his "ideal" portfolio. To build such a portfolio selection framework, the f-divergence measure from information theory is used. There are many advantages to using the f-divergence measure. First, the allocation is made such that it is in agreement with the historical data set. Second, the divergence measure is a convex function, which enables the use of fast optimization algorithms. Third, the objective value of the minimum portfolio divergence measure provides an indication distance from the ideal portfolio. A statistical test can therefore be constructed from the value of the objective function. Fourth, with adequate choices of both the target distribution and the divergence measure, the objective function of the f-portfolios reduces to the expected utility function.
Item Type: | MPRA Paper |
---|---|
Original Title: | Portfolio optimization based on divergence measures |
Language: | English |
Keywords: | Portfolio weights modeling; Divergence measures; Dual divergence; Information theory; Minimax optimization problems |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C43 - Index Numbers and Aggregation G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis |
Item ID: | 43332 |
Depositing User: | Yohan Chalabi |
Date Deposited: | 20 Dec 2012 12:06 |
Last Modified: | 27 Sep 2019 18:01 |
References: | S. Ali and S. Silvey. A general class of coefficients of divergence of one distribution from another. J. R. Stat. Soc., Ser. B, 28:131-142, 1966. F. Black and R. Litterman. Global portfolio optimization. Financial Analysts Journal, pages 28-43, 1992. M. Broniatowski and A. Keziou. Minimization of $\phi$-divergences on sets of signed measures. Stud. Sci. Math. Hung., 43(4):403-442, 2006. M. Broniatowski and A. Keziou. Parametric estimation and tests through divergences and the duality technique. Journal of Multivariate Analysis, 100(1):16-36, 2009. N. Cressie and T. R. Read. Multinomial goodness-of-fit tests. J. R. Stat. Soc., Ser. B, 46: 440-464, 1984. I. Csiszar. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitaet von Markoffschen Ketten. Publ. Math. Inst. Hung. Acad. Sci., Ser. A, 8:85-108, 1963. E. De Giorgi. Reward-risk portfolio selection and stochastic dominance. Journal of Banking & Finance, 29(4):895-926, 2005. P. Fishburn. Mean-risk analysis with risk associated with below-target returns. American Economic Review, 67(2):116-126, 1977. H. Foellmer and A. Schied. Convex measures of risk and trading constraints. Finance and Stochastics, 6:429-447, 2002. F. Foster and C. Whiteman. An application of Bayesian option pricing to the Soybean market. American journal of agricultural economics, 81(3):722-727, 1999. M. R. Haley and C. H. Whiteman. Generalized safety first and a new twist on portfolio performance. Econometric Reviews, 27(4-6):457-483, 2008. L. Jager and J. A. Wellner. Goodness-of-fit tests via phi-divergences. Ann. Stat., 35(5):2018-2053, 2007. P. Jorion. Value at risk: the new benchmark for controlling market risk, volume 2. McGraw-Hill New York, 1997. A. Keziou. Dual representation of $\phi$-divergences and applications. Comptes Rendus Mathematique, 336(10):857-862, 2003. Y. Kitamura and M. Stutzer. An information-theoretic alternative to generalized method of moments estimation. Econometrica, 65(4):861-874, July 1997. S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical Statistics, 22(1):79-86, 1951. F. Liese and I. Vajda. On divergences and informations in statistics and information theory. Information Theory, IEEE Transactions on, 52(10):4394-4412, Oct. 2006. B. Lindsay. Efficiency versus robustness - the case for minimum Hellinger distance and related methods. Annals of Statistics, 22(2):1081-1114, June 1994. P. Mahalanobis. On the generalized distance in statistics. In Proceedings of the National Institute of Sciences of India, volume 2, pages 49-55. New Delhi, 1936. H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77-91, 1952. H. Markowitz. Portfolio Selection. John Wiley & Sons, New York, 1959. A. Meucci. Fully flexible views: theory and practice. Risk, 21(10):97-102, 2008. D. Morales, L. Pardo, and I. Vajda. Some new statistics for testing hypotheses in parametric models. Journal of Multivariate Analysis, 62(1):137-168, July 1997. D. Morales, L. Pardo, M. Pardo, and I. Vajda. Limit laws for disparities of spacings. Journal of Nonparametric Statistics, 15(3):325-342, June 2003. T. Morimoto. Markov processes and the H-theorem. J. Phys. Soc. Jap., 18:328-331, 1963. L. Pardo. Statistical Inference Based on Divergence Measures. Taylor & Francis Group, LLC, 2006. T. R. Read and N. A. Cressie. Goodness-of-fit statistics for discrete multivariate data. New York etc.: Springer-Verlag, 1988. J. Robertson, E. Tallman, and C. Whiteman. Forecasting using relative entropy. Journal of Money Credit and Banking, 37(3):383-401, June 2005. J. Robinson, E. Ronchetti, and G. Young. Saddlepoint approximations and tests based on multivariate M-estimates. Ann. Stat., 31(4):1154-1169, 2003. R. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of risk, 2: 21-42, 2000. A. D. Roy. Safety first and the holding of assets. Econometrica, 20(3):431-449, 1952. C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423, 1948. F. Sortino and R. Van Der Meer. Downside risk. The Journal of Portfolio Management, 17(4): 27-31, 1991. M. Stutzer. A simple nonparametric approach to derivative security valuation. Journal of Finance, 51(5):1633-1652, Dec. 1996. M. Stutzer. A portfolio performance index. Financial Analysts Journal, 56(3):52, 2000. A. Toma and M. Broniatowski. Dual divergence estimators and tests: Robustness results. Journal of Multivariate Analysis, 102(1):20-36, 2011. A. Toma and S. Leoni-Aubin. Robust tests based on dual divergence estimators and saddlepoint approximations. Journal of Multivariate Analysis, 101(5):1143-1155, 2010. I. Vajda. Theory of statistical inference and information. Dordrecht etc.: Kluwer Academic Publishers, 1989. M. Yamada and J. Rajasekera. Portfolio re-balancing with the entropy criteria. Technical report, Report No. 310, QUICK Research Institute Corp, 1993. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/43332 |