Logo
Munich Personal RePEc Archive

On the Approximate Maximum Likelihood Estimation for Diffusion Processes

Chang, Jinyuan and Chen, Songxi (2011): On the Approximate Maximum Likelihood Estimation for Diffusion Processes. Published in:

[thumbnail of MPRA_paper_46279.pdf]
Preview
PDF
MPRA_paper_46279.pdf

Download (310kB) | Preview

Abstract

The transition density of a diffusion process does not admit an explicit expression in general, which prevents the full maximum likelihood estimation (MLE) based on discretely observed sample paths. Aït-Sahalia [J. Finance 54 (1999) 1361–1395; Econometrica 70 (2002) 223–262] proposed asymptotic expansions to the transition densities of diffusion processes, which lead to an approximate maximum likelihood estimation (AMLE) for parameters. Built on Aït-Sahalia’s [Econometrica 70 (2002) 223–262; Ann. Statist. 36 (2008) 906–937] proposal and analysis on the AMLE, we establish the consistency and convergence rate of the AMLE, which reveal the roles played by the number of terms used in the asymptotic density expansions and the sampling interval between successive observations. We find conditions under which the AMLE has the same asymptotic distribution as that of the full MLE. A first order approximation to the Fisher information matrix is proposed.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.