Lehmann, Robert and Wohlrabe, Klaus (2013): Sectoral gross value-added forecasts at the regional level: Is there any information gain?
Preview |
PDF
MPRA_paper_46765.pdf Download (560kB) | Preview |
Abstract
In this paper, we ask whether it is possible to forecast gross-value added (GVA) and its sectoral sub-components at the regional level. We are probably the first who evaluate sectoral forecasts at the regional level using a huge data set at quarterly frequency to investigate this issue. With an autoregressive distributed lag model we forecast total and sectoral GVA for one of the German states (Saxony) with more than 300 indicators from different regional levels (international, national and regional) and additionally make usage of different pooling strategies. Our results show that we are able to increase forecast accuracy of GVA for every sector and for all forecast horizons compared to an autoregressive process. Finally, we show that sectoral forecasts contain more information in the short term (one quarter), whereas direct forecasts of total GVA are preferable in the medium (two and three quarters) and long term (four quarters).
Item Type: | MPRA Paper |
---|---|
Original Title: | Sectoral gross value-added forecasts at the regional level: Is there any information gain? |
English Title: | Sectoral gross value-added forecasts at the regional level: Is there any information gain? |
Language: | English |
Keywords: | regional forecasting; gross value added; leading indicators; forecast combination; disaggregated forecasts |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E37 - Forecasting and Simulation: Models and Applications R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R11 - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes |
Item ID: | 46765 |
Depositing User: | Robert Lehmann |
Date Deposited: | 06 May 2013 13:37 |
Last Modified: | 28 Sep 2019 23:07 |
References: | Abberger, K. and Wohlrabe, K. (2006). Einige Prognoseeigenschaften des ifo Geschäftsklimas – Ein Überblick über die neuere wissenschaftliche Literatur. ifo Schnelldienst, 59 (22), 19–26. Angelini, E., Banbura, M. and Rünstler, G. (2010). Estimating and Forecasting the Euro Area Monthly National Accounts from a Dynamic Factor Model. OECD Journal: Journal of Business Cycle Measurement and Analysis, 2010 (1), 5–26. Bandholz, H. and Funke, M. (2003). Die Konstruktion und Schätzung eines Konjunkturfrühindikators für Hamburg. Wirtschaftsdienst, 83 (8), 540–548. Barhoumi, K. P., Brunhes-Lesage, V., Darné, O., Ferrara, L., Pluyaud, B. and Rouvreau, B. (2008). Monthly forecasting of French GDP: A revised version of the OPTIM model. Banque de France Working papers No. 222. Barhoumi, K. P., Darné, O., Ferrara, L. and Pluyaud, B. (2011). Monthly GDP forecasting using bridge models: Application for the French economy. Bulletin of Economic Research, forthcoming. Chow, G. C. and Lin, A. (1971). Best linear unbiased interpolation, distribution and exploration of time series by related series. The Review of Economics and Statistics, 53 (4), 372–375. Clements, H. P. and Hendry, D. F. (1993). On the Limitations of Comparing Mean Squared Forecast Errors. Journal of Forecasting, 12 (8), 617–637. Cors, A. and Kuzin, V. (2003). An approach for timely estimations of the German GDP. AStA Advances in Statistical Analysis, 87 (2), 201–220. Diebold, F. X. and Mariano, R. S. (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13 (3), 253–263. Drechsel, K. and Maurin, L. (2011). Flow of Conjunctural Information and Forecast of Euro Area Economic Activity. Journal of Forecasting, 30 (3), 336–354. Drechsel, K. and Scheufele, R. (2012a). Bottom-up or direct? Forecasting German GDP in a Data-rich Environment, Paper presented at the annual meeting of the European Economic Association. Drechsel, K. and Scheufele, R. (2012b). The performance of short-term forecasts of the german economy before and during the 2008/2009 recession. International Journal of Forecasting, 28 (2), 428–445. Dreger, C. and Kholodilin, K. A. (2007). Prognosen der regionalen Konjunkturentwicklung. Quarterly Journal of Economic Research, 76 (4), 47–55. Eickmeier, S. and Ziegler, C. (2008). How Successful are Dynamic Factor Models at Forecasting Output and Inflation? A Meta-Analytic Approach. Journal of Forecasting, 27 (3), 237–265. German Council of Economic Experts (2008). Das deutsche Finanzsystem: Effizienz steigern – Stabilität erhöhen. Expertise commissioned by the Federal Government, German Council of Economic Experts. Granger, C. W. J. and Newbold, P. (1973). Some comments on the evaluation of economic forecasts. Applied Economics, 5 (1), 35–47. Hahn, E. and Skudelny, F. (2008). Early estimates of euro area real GDP growth – A bottom up approach from the production side. ECB Working Paper Series No. 975. Harvey, D. I., Leybourne, S. J. and Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13 (2), 281–291. Harvey, D. I., Leybourne, S. J. and Newbold, P. (1998). Tests for Forecast Encompassing. Journal of Business and Economic Statistics, 16 (2), 254–259. Kholodilin, K. A., Kooths, S. and Siliverstovs, B. (2008). A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder. Spatial Economic Analysis, 3 (2), 195–207. Lehmann, R., Speich, W. D., Straube, R. and Vogt, G. (2010). Funktioniert der ifo Konjunkturtest auch in wirtschaftlichen Krisenzeiten? Eine Analyse der Zusammenhänge zwischen ifo Geschäftsklima und amtlichen Konjunkturdaten für Sachsen. ifo Dresden berichtet, 17 (3), 8–14. Lehmann, R. and Wohlrabe, K. (2012). Forecasting GDP at the Regional Level with Many Predictors. CESifo Working Paper Series No. 3956. Newey, W. K. and West, K. D. (1987). A Simple Positive Semi-Definite Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55 (3), 703–708. Nierhaus, W. (2007). Vierteljährliche Volkswirtschaftliche Gesamtrechnungen für Sachsen mit Hilfe temporaler Disaggregation. ifo Dresden berichtet, 14 (4), 24–36. Stock, J. H. and Watson, M. W. (2006). Forecasting with many Predictors. In G. Elliott, C. W. J. Granger and A. Timmermann (eds.), Handbook of Economic Forecasting, vol. 1, 10, Elsevier, pp. 515–554. Timmermann, A. (2006). Forecast Combinations. In G. Elliott, C. W. J. Granger and A. Timmermann (eds.), Handbook of Economic Forecasting, vol. 1, 4, Elsevier, pp. 135–196. Working Group Regional Accounts VGRdL (2011). Gross domestic product, gross value added in Germany by Bundesland and East-West-Regions. Working Group Regional Accounts VGRdL, Series 1, State results Volume 1, Date of calculation: August 2010 / February 2011, Stuttgart 2011. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/46765 |