Munich Personal RePEc Archive

Consistent estimation of the Value-at-Risk when the error distribution of the volatility model is misspecified

El Ghourabi, Mohamed and Francq, Christian and Telmoudi, Fedya (2013): Consistent estimation of the Value-at-Risk when the error distribution of the volatility model is misspecified.

[img]
Preview
PDF
MPRA_paper_51150.pdf

Download (352kB) | Preview

Abstract

A two-step approach for conditional Value at Risk (VaR) estimation is considered. In the first step, a generalized-quasi-maximum likelihood estimator (gQMLE) is employed to estimate the volatility parameter, and in the second step the empirical quantile of the residuals serves to estimate the theoretical quantile of the innovations. When the instrumental density $h$ of the gQMLE is not the Gaussian density utilized in the standard QMLE, or is not the true distribution of the innovations, both the estimations of the volatility and of the quantile are asymptotically biased. The two errors however counterbalance each other, and we finally obtain a consistent estimator of the conditional VaR. For a wide class of GARCH models, we derive the asymptotic distribution of the VaR estimation based on gQMLE. We show that the optimal instrumental density $h$ depends neither on the GARCH parameter nor on the risk level, but only on the distribution of the innovations. A simple adaptive method based on empirical moments of the residuals makes it possible to infer an optimal element within a class of potential instrumental densities. Important asymptotic efficiency gains are achieved by using gQMLE instead of the usual Gaussian QML when the innovations are heavy-tailed. We extended our approach to Distortion Risk Measure parameter estimation, where consistency of the gQMLE-based method is also proved. Numerical illustrations are provided, through simulation experiments and an application to financial stock indexes.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.