Vogel, Johanna (2013): Regional Convergence in Europe: A Dynamic Heterogeneous Panel Approach.
Preview |
PDF
MPRA_paper_51794.pdf Download (1MB) | Preview |
Abstract
This paper studies the effects of allowing for heterogeneous slope coefficients in the Mankiw, Romer and Weil (1992) model, based on panel data for 193 EU-15 regions from 1980 to 2005. We first estimate the model using conventional pooled panel data estimators, based on data at five-year intervals, allowing at most intercepts to differ across regions. Then we relax the restriction of homogeneous slope coefficients by estimating separate time-series models for each region based on annual data, using Pesaran and Smith's (1995) mean group estimator. To account for spatial dependence, we employ the common correlated effects approach of Pesaran (2006). Our empirical analysis indicates important differences across regions in the speed of adjustment to region-specific long-run paths for the level of income per capita. Allowing for heterogeneous coefficients doubles the speed of adjustment to 22% per year on average compared to the homogenous case, which suggests downward bias in the latter. We also find a positive and significant effect of the rate of investment, although the implied capital elasticity and the estimated long-run effect of investment are smaller than expected.
Item Type: | MPRA Paper |
---|---|
Original Title: | Regional Convergence in Europe: A Dynamic Heterogeneous Panel Approach |
Language: | English |
Keywords: | Convergence, European regions, dynamic heterogeneous panels, mean group estimation, cross-section dependence |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O40 - General R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R11 - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes |
Item ID: | 51794 |
Depositing User: | Johanna Vogel |
Date Deposited: | 07 Dec 2013 04:43 |
Last Modified: | 26 Sep 2019 10:23 |
References: | Arellano, M. and Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations, Review of Economic Studies 58(2): 277-297. Arellano, M. and Bover, O. (1995). Another look at the instrumental variable estimation of error-components models, Journal of Econometrics 68(1): 29–51. Armstrong, H. W. (1995). Convergence among regions of the European Union, 1950-1990, Papers in Regional Science 74(2): 143–152. Badinger, H., Müller, W. G. and Tondl, G. (2004). Regional convergence in the European Union, 1985-1999: A spatial dynamic panel analysis, Regional Studies 38(3): 241– 253. Barro, R. J. and Sala-i-Martin, X. (1991). Convergence across States and Regions, Brookings Papers on Economic Activity 22(1): 107–182. Barro, R. J. and Sala-i-Martin, X. (1992). Convergence, Journal of Political Economy 100(2): 223–251. Barro, R. J. and Sala-i-Martin, X. (2004). Economic Growth, 2nd edn, London: MIT Press. Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models, Journal of Econometrics 87(1): 115–143. Blundell, R. and Bond, S. (2000). GMM estimation with persistent panel data: An application to production functions, Econometric Reviews 19(3): 321–340. Blundell, R., Bond, S. and Windmeijer, F. (2000). Estimation in dynamic panel data models: Improving on the performance of the standard GMM estimator, in B. H. Baltagi (ed.), Advances in Econometrics, Volume 15: Nonstationary Panels, Panel Cointegration and Dynamic Panels, Amsterdam: JAI Elsevier Science. Bond, S., Leblebicioglu, A. and Schiantarelli, F. (2010). capital accumulation and growth: A new look at the empirical evidence, Journal of Applied Econometrics 25(7): 1073–1099. Bond, S. R. (2002). Dynamic panel data models: A guide to micro data methods and practice, Portuguese Economic Journal 1(2): 141–162. Bond, S. R., Hoeffler, A. and Temple, J. (2001). GMM estimation of empirical growth models, CEPR Discussion Paper 3048. Bouayad-Agha, S. and Védrine, L. (2010). Estimation strategies for a spatial dynamic panel using GMM. A new approach to the convergence issue of European regions, Spatial Economic Analysis 5(2): 205–227. Canova, F. and Marcet, A. (1995). The poor stay poor: Non-convergence across countries and regions, CEPR Discussion Paper 1265. Caselli, F., Esquivel, G. and Lefort, F. (1996). Reopening the convergence debate: A new look at cross-country growth empirics, Journal of Economic Growth 1(3): 363–389. Coakley, J., Fuertes, A.-M. and Smith, R. (2006). Unobserved heterogeneity in panel time series models, computational statistics and data analysis 50(9): 2361–2380. Corrado, L., Martin, R. and Weeks, M. (2005). Identifying and interpreting regional convergence clusters across Europe, Economic Journal 115(502): C133–C160. Durlauf, S. N., Johnson, P. A. and Temple, J. R. (2005). Growth econometrics, in P. Aghion and S. N. Durlauf (eds), Handbook of Economic Growth, Vol. 1A, Amsterdam: North Holland, pp. 555–677. Eberhardt, M. and Teal, F. (2011). Econometrics for grumblers: A new look at the literature on cross-country growth empirics, Journal of Economic Surveys 25(1): 99–155. Elhorst, J. P., Piras, G. and Arbia, G. (2010). Growth and convergence in a multi-regional model with space-time dynamics, Geographical Analysis 42(3): 338–355. European Commission (2010). Investing in Europe’s Future: Fifth Report on Economic, Social and Territorial Cohesion, Luxembourg: Publications Office of the European Union. Fischer, M. M. and Stirböck, C. (2006). Pan-European regional income growth and club-convergence, Annals of Regional Science 40(4): 693–721. Gollin, D. (2002). Getting income shares right, Journal of Political Economy 110(2): 458–474. Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators, Econometrica 50(4): 1029–1054. Hsiao, C., Pesaran, M. H. and Tahmiscioglu, A. K. (1999). Bayes estimation of short-run coefficients in dynamic panel data models, in C. Hsiao, M. H. Pesaran, K. Lahiri and L. F. Lee (eds), Analysis of Panels and Limited Dependent Variable Models: In Honour of G.S. Maddala, Cambridge: Cambridge University Press. Im, K.-S., Pesaran, M. H. and Shin, Y. (2003). Testing for unit roots in heterogeneous panels, Journal of Econometrics 115(1): 53–74. Islam, N. (1995). Growth empirics: A panel data approach, Quarterly Journal of Economics 110(4): 1127–1170. Islam, N. (1998). Growth empirics: A panel data approach - A reply, Quarterly Journal of Economics 113(1): 325–329. Kapetanios, G., Pesaran, M. H. and Yamagata, T. (2011). Panels with non-stationary multifactor error structures, Journal of Econometrics 160(2): 326–348. Lee, K., Pesaran, M. H. and Smith, R. (1997). Growth and convergence in a multi-country empirical stochastic Solow model, Journal of Applied Econometrics 12(4): 357–392. Mankiw, N. G., Romer, D. and Weil, D. N. (1992). A contribution to the empirics of economic growth, Quarterly Journal of Economics 107(2): 407–437. Meliciani, V. and Peracchi, F. (2006). Convergence in per-capita GDP across European regions: A reappraisal, Empirical Economics 31(3): 549–568. Nickell, S. (1981). Biases in dynamic models with fixed effects, Econometrica 49(6): 1417–1426. Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors, Oxford Bulletin of Economics and Statistics 61(S1): 653–670. Pedroni, P. (2004). Panel Cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis, Econometric Theory 20(3): 597–625. Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels, IZA Discussion Paper 1240. Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure, Econometrica 74(4): 967–1012. Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence, Journal of Applied Econometrics 22(2): 265–312. Pesaran, M. H. and Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels, Journal of Econometrics 68(1): 79–113. Pesaran, M. H., Smith, R. and Im, K.-S. (1996). Dynamic linear models for heterogeneous panels, in L. Matyas and P. Sevestre (eds), The Econometrics of Panel Data: A Handbook of Theory with Applications, 2nd rev. ed., Dordrecht: Kluwer Academic. Pesaran, M. H. and Tosetti, E. (2011). Large panels with common factors and spatial correlation, Journal of Econometrics 161(2): 182–202. Phillips, P. C. B. and Sul, D. (2003). Dynamic panel estimation and homogeneity testing under cross section dependence, Econometrics Journal 6(1): 217–259. Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata, Stata Journal 9(1): 86–136. Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables, Econometrica 26(3): 393–415. Smith, R. P. and Fuertes, A.-M. (2004). Panel time-series, mimeo, Centre for Microdata Methods and Practice, April 2004. Solow, R. M. (1956). A contribution to the theory of economic growth, Quarterly Journal of Economics 70(1): 65–94. Swan, T. W. (1956). Economic growth and capital accumulation, Economic Record 32(2): 334–361. Tondl, G. (1999). The changing pattern of regional convergence in Europe, Review of Regional Research 19(1): 1–33. Vogel, J. (2013). The Two Faces of R&D and Human Capital: Evidence from Western European Regions, Papers in Regional Science, forthcoming, doi: 10.1111/pirs.12084. Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators, Journal of Econometrics 126(1): 25–51. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/51794 |