Preinerstorfer, David and Pötscher, Benedikt M. (2013): On Size and Power of Heteroskedasticity and Autocorrelation Robust Tests.
This is the latest version of this item.

PDF
MPRA_paper_57184.pdf Download (916kB)  Preview 
Abstract
Testing restrictions on regression coefficients in linear models often requires correcting the conventional Ftest for potential heteroskedasticity or autocorrelation amongst the disturbances, leading to socalled heteroskedasticity and autocorrelation robust test procedures. These procedures have been developed with the purpose of attenuating size distortions and power deficiencies present for the uncorrected Ftest. We develop a general theory to establish positive as well as negative finitesample results concerning the size and power properties of a large class of heteroskedasticity and autocorrelation robust tests. Using these results we show that nonparametrically as well as parametrically corrected Ftype tests in time series regression models with stationary disturbances have either size equal to one or nuisanceinfimal power equal to zero under very weak assumptions on the covariance model and under generic conditions on the design matrix. In addition we suggest an adjustment procedure based on artificial regressors. This adjustment resolves the problem in many cases in that the soadjusted tests do not suffer from size distortions. At the same time their power function is bounded away from zero. As a second application we discuss the case of heteroskedastic disturbances.
Item Type:  MPRA Paper 

Original Title:  On Size and Power of Heteroskedasticity and Autocorrelation Robust Tests 
English Title:  On Size and Power of Heteroskedasticity and Autocorrelation Robust Tests 
Language:  English 
Keywords:  Size distortion, power deficiency, invariance, robustness, autocorrelation, heteroskedasticity, HAC, fixedbandwidth, longrunvariance, feasible GLS 
Subjects:  C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C12  Hypothesis Testing: General C  Mathematical and Quantitative Methods > C2  Single Equation Models ; Single Variables > C20  General 
Item ID:  57184 
Depositing User:  Benedikt Poetscher 
Date Deposited:  09. Jul 2014 00:45 
Last Modified:  09. Jul 2014 01:02 
References:  Anderson, T. W. (1971). The statistical analysis of time series. Wiley Series in Probability and Mathematical Statistics, Wiley New York. Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59 817858. Andrews, D. W. K. and Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60 953966. Bakirov, N. and Székely, G. (2005). Student's ttest for gaussian scale mixtures. Zapiski Nauchnyh Seminarov POMI, 328 519. Banerjee, A. N. and Magnus, J. R. (2000). On the sensitivity of the usual t and Ftests to covariance misspecification. Journal of Econometrics, 95 157 176. Bartlett, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37 116. Berk, K. N. (1974). Consistent autoregressive spectral estimates. Annals of Statistics, 2 489502. Billingsley, P. (1968). Convergence of probability measures. John Wiley & Sons, Inc., New YorkLondonSydney. CribariNeto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics and Data Analysis, 45 215 233. Deistler, M. and Pötscher, B. M. (1984). The behaviour of the likelihood function for ARMA models. Advances in Applied Probability, 16 843866. den Haan, W. J. and Levin, A. T. (1997). A practitioner's guide to robust covariance matrix estimation. In Robust Inference (G. Maddala and C. Rao, eds.), vol. 15 of Handbook of Statistics. Elsevier, 299 342. Dufour, J.M. (1997). Some impossibility theorems in econometrics with applications to structural and dynamic models. Econometrica, 65 13651387. Dufour, J.M. (2003). Identification, weak instruments, and statistical inference in econometrics. Canadian Journal of Economics/Revue canadienne d'économique, 36 767808. Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Ann. Math. Statist., 34 447456. Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66). Univ. California Press, Berkeley, Calif., Vol. I: Statistics, pp. 5982. Flegal, J. M. and Jones, G. L. (2010). Batch means and spectral variance estimators in Markov chain Monte Carlo. Ann. Statist., 38 10341070. Grenander, U. and Rosenblatt, M. (1957). Statistical analysis of stationary time series. John Wiley & Sons, New York. Hannan, E. (1970). Multiple time series. Wiley Series in Probability and Mathematical Statistics, Wiley New York. Hannan, E. J. (1957). The variance of the mean of a stationary process. Journal of the Royal Statistical Society. Series B, 19 282285. Hansen, B. E. (1992). Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica, 60 967972. Heidelberger, P. and Welch, P. D. (1981). A spectral method for confidence interval generation and run length control in simulations. Commun. ACM, 24 233245. Ibragimov, R. and Müller, U. K. (2010). tstatistic based correlation and heterogeneity robust inference. Journal of Business and Economic Statistics, 28 453468. Jansson, M. (2002). Consistent covariance matrix estimation for linear processes. Econometric Theory, 18 14491459. Jansson, M. (2004). The error in rejection probability of simple autocorrelation robust tests. Econometrica, 72 937946. Jowett, G. H. (1955). The comparison of means of sets of observations from sections of independent stochastic series. Journal of the Royal Statistical Society. Series B, 17 208227. Keener, R. W., Kmenta, J. and Weber, N. C. (1991). Estimation of the covariance matrix of the leastsquares regression coefficients when the disturbance covariance matrix is of unknown form. Econometric Theory, 7 2245. Kelejian, H. H. and Prucha, I. R. (2007). HAC estimation in a spatial framework. Journal of Econometrics, 140 131 154. Kelejian, H. H. and Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157 5367. Kiefer, N. M. and Vogelsang, T. J. (2002a). Heteroskedasticityautocorrelation robust standard errors using the Bartlett kernel without truncation. Econometrica, 70 20932095. Kiefer, N. M. and Vogelsang, T. J. (2002b). Heteroskedasticityautocorrelation robust testing using bandwidth equal to sample size. Econometric Theory, 18 13501366. Kiefer, N. M. and Vogelsang, T. J. (2005). A new asymptotic theory for heteroskedasticityautocorrelation robust tests. Econometric Theory, 21 11301164. Kiefer, N. M., Vogelsang, T. J. and Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica, 68 695714. Krämer, W. (1989). On the robustness of the Ftest to autocorrelation among disturbances. Economics Letters, 30 37 40. Krämer, W. (2003). The robustness of the Ftest to spatial autocorrelation among regression disturbances. Statistica (Bologna), 63 435440 (2004). Krämer, W., Kiviet, J. and Breitung, J. (1990). The null distribution of the Ftest in the linear regression model with autocorrelated disturbances. Statistica (Bologna), 50 503509. Krämer, W. and Hanck, C. (2009). More on the Ftest under nonspherical disturbances. In Statistical Inference, Econometric Analysis and Matrix Algebra (B. Schipp and W. Krämer, eds.). PhysicaVerlag HD, 179184. Lehmann, E. L. and Romano, J. P. (2005). Testing statistical hypotheses. 3rd ed. Springer Texts in Statistics, Springer, New York. Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54 217224. Magee, L. (1989). An Edgeworth test size correction for the linear model with AR(1) errors. Econometrica, 57 661674. Martellosio, F. (2010). Power properties of invariant tests for spatial autocorrelation in linear regression. Econometric Theory, 26 152186. Neave, H. R. (1970). An improved formula for the asymptotic variance of spectrum estimates. The Annals of Mathematical Statistics, 41 7077. Newey, W. K. and West, K. D. (1987). A simple, positive semidefinite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55 703708. Newey, W. K. and West, K. D. (1994). Automatic lag selection in covariance matrix estimation. The Review of Economic Studies, 61 631653. Park, R. E. and Mitchell, B. M. (1980). Estimating the autocorrelated error model with trended data. Journal of Econometrics, 13 185201. Perron, P. and Ren, L. (2011). On the irrelevance of impossibility theorems: the case of the longrun variance. J. Time Ser. Econom., 3 Art. 1, 34. Phillips, P. C. B. (2005). HAC estimation by automated regression. Econometric Theory, 21 116142. Phillips, P. C. B., Sun, Y. and Jin, S. (2006). Spectral density estimation and robust hypothesis testing using steep origin kernels without truncation. International Economic Review, 47 837894. Phillips, P. C. B., Sun, Y. and Jin, S. (2007). Long run variance estimation and robust regression testing using sharp origin kernels with no truncation. Journal of Statistical Planning and Inference, 137 9851023. Politis, D. (2011). Higherorder accurate, positive semidefinite estimation of largesample covariance and spectral density matrices. Econometric Theory, 27 703744. Pötscher, B. M. (2002). Lower risk bounds and properties of confidence sets for illposed estimation problems with applications to spectral density and persistence estimation, unit roots, and estimation of long memory parameters. Econometrica, 70 10351065. Preinerstorfer, D. (2014). Finite sample properties of tests based on prewhitened nonparametric covariance estimators. Working Paper, Department of Statistics, University of Vienna. Preinerstorfer, D. and Pötscher, B. M. (2014). On the power of invariant tests for hypotheses on a covariance matrix. Working Paper, Department of Statistics, University of Vienna. Robinson, G. (1979). Conditional properties of statistical procedures. Annals of Statistics, 7 742755. Sun, Y. (2012). A heteroskedasticity and autocorrelation robust F test using an orthonormal series variance estimator. Econometrics Journal, 16 126. Sun, Y. and Kaplan, D. M. (2012). Fixedsmoothing asymptotics and accurate F approximation using vector autoregressive covariance matrix estimators. Working Paper, Department of Economics, UC San Diego. Sun, Y., Phillips, P. C. B. and Jin, S. (2008). Optimal bandwidth selection in heteroskedasticity autocorrelation robust testing. Econometrica, 76 175194. Sun, Y., Phillips, P. C. B. and Jin, S. (2011). Power maximization and size control in heteroskedasticity and autocorrelation robust tests with exponentiated kernels. Econometric Theory, 27 13201368. Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70 10551096. Velasco, C. and Robinson, P. M. (2001). Edgeworth expansions for spectral density estimates and studentized sample mean. Econometric Theory, 17 497539. Vogelsang, T. J. (2012). Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixedeffects. Journal of Econometrics, 166 303 319. White, H. (1980). A heteroskedasticityconsistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48 817838. Zhang, X. and Shao, X. (2013a). Fixedsmoothing asymptotics for time series. Ann. Statist., 41 13291349. Zhang, X. and Shao, X. (2013b). On a general class of long run variance estimators. Economics Letters, 120 437441. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/57184 
Available Versions of this Item

On Size and Power of Heteroscedasticity and Autocorrelation Robust Tests. (deposited 30. Mar 2013 16:47)
 On Size and Power of Heteroskedasticity and Autocorrelation Robust Tests. (deposited 09. Jul 2014 00:45) [Currently Displayed]