Drivas, Kyriakos and Economidou, Claire and Tsionas, Efthymios G. (2014): A Poisson Stochastic Frontier Model with Finite Mixture Structure.
Preview |
PDF
MPRA_paper_57485.pdf Download (318kB) | Preview |
Abstract
Standard stochastic frontier models estimate log-linear specifications of production technology, represented mostly by production, cost, profit, revenue, and distance frontiers. We develop a methodology for stochastic frontier models of count data allowing for technological and inefficiency induced heterogeneity in the data and endogenous regressors. We derive the corresponding log-likelihood function and conditional mean of inefficiency to estimate technology regime-specific inefficiency. We further provide empirical evidence that demonstrates the applicability of the proposed model.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Poisson Stochastic Frontier Model with Finite Mixture Structure |
English Title: | A Poisson Stochastic Frontier Model with Finite Mixture Structure |
Language: | English |
Keywords: | efficiency, Poisson stochastic frontier, mixture, innovation, states |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C24 - Truncated and Censored Models ; Switching Regression Models ; Threshold Regression Models C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C33 - Panel Data Models ; Spatio-temporal Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 57485 |
Depositing User: | Dr Dimitrios Karamanis |
Date Deposited: | 23 Jul 2014 14:56 |
Last Modified: | 27 Sep 2019 11:10 |
References: | Acemoglu, D., Zilibotti, F., 2001. Productivity differences. Quarterly Journal of Economics 116(2), 563–606. Aghion, P., Howitt, P., 1998. Endogenous Growth Theory. MIT Press, Cambridge, MA. Aigner, D. J., Lovell, K. C., Schmidt, P., 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6(1), 21–37. Azariadis, C., Drazen, A., 1990. Threshold externalities in economic development. The Quarterly Journal of Economics 105 (2), 501– 526. Baltagi, B. H., Griffin, J. M., 1988. A general index of technical change. Journal of Political Economy 96 (1), 20–41. Barro, R. J., Sala-i-Martin, X. X., 1995. Economic Growth. McGraw-Hill, New York. Basu, S., Weil, D., 1998. Appropriate technology and growth. Quarterly Journal of Economics 113(4), 1025–1054. Belenzon, S., Schankerman, M., 2012. Spreading the word: Geography, policy and knowledge spillovers. Review of Economics and Statistics, forthcoming. Bloom, N., Griffith, R., Reenen, J. V., 2002. Do r&d tax credits work? evidence from a panel of oecd countries 1979-1997. Journal of Public Economics 85(1), 1–31. Bos, J., Economidou, C., Koetter, M., 2010a. Technology clubs, r&d and growth patterns: Evidence from eu manufacturing. European Economic Review 54(1), 60–79. Bos, J., Economidou, C., Koetter, M., Kolari, J., 2010b. Do all countries grow alike? Journal of Development Economics 91(1), 113–127. Bottazzi, L., Peri, G., 2003. Innovation and spillovers in regions: Evidence from european patent data. European Economic Review 47(4), 687–717. Bottazzi, L., Peri, G., 2007. The international dynamics of r&d and innovation in the long run and in the short run. Economic Journal 117(518), 486–511. Cameron, C. A., Trivedi, P. K., 2013. Regression Analysis of Count Data, 2nd Edition. Econometric Society Monograph No. 53. Cambridge University Press, 1998. Coe, D., Helpman, E., 1995. International R&D spillovers. European Economic Review 39(5), 859–887. Coelli, T., Rao, D. P., Battese, G. E., 2005. An Introduction to Efficiency Analysis, 2nd Edition. Springer, New York. Cruz-Cázaresa, C., Bayona-Sáezb, C., García-Marco, T., 2013. You can’t manage right what you can’t measure well: Technological innovation efficiency. Research Policy 42(6-7), 1239–1250. Cullmann, A., Schmidt-Ehmcke, J., Zloczysti, P., 2012. Innovation, r&d efficiency and the impact of the regulatory environment: A two-stage semi-parametric dea approach. Oxford Economic Papers 64(1), 176–196. Davutyan, N., 1989. Bank failures as poisson variates. Economics Letters 29(4), 333–338. Dionne, G., Artis, M., Guillen, M., 1996. Count data models for a credit scoring system. Journal of Empirical Finance 3(3), 303–325. Easterly,W., Levine, R., 2001. It’s not factor accumulation: Stylized facts and growth models. TheWorld Bank Economic Review 15(2), 177–219. Fè-Rodríguez, E., 2007. Exploring a stochastic frontier model when the dependent variable is a count. University of Manchester, School of Economics Discussion Paper Series No. 0725. Fè-Rodríguez, E., Hofler, R., 2013. Count data stochastic frontier models, with an application to the patents-r&d relationship. Journal of Productivity Analysis 39(3), 271–284. Fu, X., Yang, Q., 2009. Exploring the cross-country gap in patenting: A stochastic frontier approach. Research Policy 38(7), 1203–1213. Garmaise, M. J., 2009. Ties that truly bind: Non-competition agreements, executive compensation and firm investment. Journal of Law, Economics, and Organization 27(2), 376–425. Geweke, J., 2007. Interpretation and inference in mixture models: Simple mcmc works. Computational Statistics & Data Analysis 51(7), 3529–3550. Greene, W. H., 2002a. Alternative panel data estimators for stochastic frontier models. Mimeo (available at http://pages.stern.nyu.edu/ wgreene/). Greene, W. H., 2002b. Econometric Modeling Guide. New York: Econometric Software, Inc. Greene, W. H., 2002c. Econometric Modeling Guide. New York: Econometric Software, Inc. Greene, W. H., 2005. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. Journal of Econometrics 126(2), 269–303. Griffith, R., Redding, S., van Reenen, J., 2004. Mapping the two faces of r&d: Productivity growth in a panel of oecd industries. Review of Economics and Statistics 86(4), 883–895. Griliches, Z., 1979. Issues in assessing the contribution of r&d to productivity growth. Bell Journal of Economics 10(1), 92–116. Guellec, D., van Pottelsberghe de la Potterie, B., 2004. From r&d to productivity growth: Do the institutional settings and the source of funds of r&d matter? Oxford Bulletin of Economics and Statistics 66(3), 353–378. Hall, B., Jaffe, A., Trajtenberg, M., 2001. The nber patent citation data file: Lessons, insights and methodological tools. NBERWorking Paper No. 8498. Hall, B. H., Ziedonis, R. H., 2001. The patent paradox revisited: An empirical study of patenting in the u.s. semiconductor industry, 1979-1995. RAND Journal of Economics 32(1), 101–128. Hausman, J. A., Hall, B., Griliches, Z., 1984. Econometric models for count data with an application to the patents-r&d relationship. NBER Working Paper No. 0017. Hofler, R., Scrogin, D., 2008. A count data stochastic frontier. Discussion Paper, University of Central Florida. Jaffe, A. B., 1986. Technology opportunity and spillovers of r&d: Evidence from firms’ patents, profits, and market value. American Economic Review 76(5), 984–1001. Jondrow, J., Lovell, C. K., Materov, I., Schmidt, P., 1982. On the estimation of technical inefficiency in the stochastic frontier production function models. Journal of Econometrics 19(2-3), 233–238. Jones, C. I., 1995. Time series test of endogenous growth models. Quarterly Journal of Economics 110(2), 495–525. Jones, C. I., 2005. The shape of production functions and the direction of technical change. Quarterly Journal of Economics 120(2), 517–549. Kejak, M., 2003. Stages of growth in economic development. Journal of Economic Dynamics and Control 27 (5), 771–800. Koop, G., 2001. Cross-sectoral patterns of efficiency and technical change in manufacturing. International Economic Review 42(1), 73–103. Kumbhakar, S. C., Lovell, K. C., 2000. Stochastic Frontier Analysis. Cambridge: Cambridge University Press. Kumbhakar, S. C., Parmeter, C., Tsionas, E., 2013. A zero inefficiency stochastic frontier model. Journal of Econometrics 172(1), 66–76. Malsberger, B., 2004. Covenants Not to Compete: A State-by-State Survey. A Bloomberg BNA Publication, Washington, D.C. Mamuneas, T., Nadiri, M., 1996. Public r&d policies and cost of behavior of the us manufacturing industries. Journal of Public Economics 63(1), 57–81. Mancusi, M. L., 2008. International spillovers and absorptive capacity: A cross-country cross-sector analysis based on patents and citations. Journal of Internationa Economics 76, 155–165. Mankiw, G. N., Romer, D., Weil, D. N., 1992. A contribution to the empirics of economic growth. Quarterly Journal of Economics 107(2), 407–437. Marx, M., Strumsky, D., Fleming, L., 2009. Mobility, skills, and the michigan non-compete experiment. Management Science 55(6), 875–889. Meeusen, W., van den Broeck, J., 1977. Efficiency estimation from cobb-douglas production functions with composed error. International Economic Review 18(2), 435–444. Orea, L., Kumbhakar, S. C., 2004. Efficiency measurement using a latent class stochastic frontier model. Empirical Economics 29(1), 169–183. Pakes, A., Griliches, Z., 1984. Patents and R&D at the firm level: A first look, in Z. Griliches (ed): R&D, Patents and Productivity, University of Chicago Press, Chicago and London. University of Chicago Press, Chicago and London. Palazzi, P., 2011. Taxation and innovation. OECD Taxation Working Papers, No. 9, OECD, Paris.Http://dx.doi.org/10.1787/5kg3h0sf1336-en. Romer, P. M., 1990. Endogenous technological change. Journal of Political Economy 98(5), 71–102. Rousseau, S., Rousseau, R., 1997. Data envelopment analysis as a tool for constructing scientometric indicators. Scientometrics 40(1), 45–56. Rousseau, S., Rousseau, R., 1998. The scientific wealth of european nations: Taking effectiveness into account. Scientometrics 42(1), 75–87. Saxenian, A., 1994. Regional Advantage: Culture and Competition in Silicon Valley nd Route 128. Harvard University Press, Cambridge Mass. Sharma, S., Thomas, V., 2008. Inter-country r&d efficiency analysis: An application of data envelopment analysis. Scientometrics 76(3), 483–501. Sickles, R., Qian, J., 2009. Stochastic frontiers with bounded inefficiency. Mimeo, Rice University. Solow, R. M., 1957. Technical change and the aggregate production function. Review of Economics and Statistics 39(3), 312–320. Terza, J., Basu, A., Rathouz, P., 2008. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. Journal of Health Economics 27 (3), 531–543. Thomas, V., Sharma, S., Jain, S., 2011. Using patents and publications to assess r&d efficiency in the states of the usa. World Patent Information 33(1), 4–10. Tsionas, E., Kumbhakar, S., 2004. Markov switching stochastic frontier model. Econometrics Journal 7(2), 398–425. Wang, E. C., 2007. R&d efficiency and economic performance: A cross-country analysis using the stochastic frontier approach. Journal of Policy Modeling 29(2), 345–360. Wang, E. C., Huang, W., 2007. Relative efficiency of r&d activities: A cross-country study accounting for environmental factors in the dea approach. Research Policy 36(2), 260–273. Wang, P., Cockburn, I., Puterman, M., 1998. Analysis of patent data: A mixed-poisson-regression-model approach. Journal of Business & Economic Statistics 16, 27–41. Wilson, D. J., 2009. Beggar thy neighbor? the in-state, out-of-state, and aggregate effects of r&d tax credits. Review of Economics and Statistics 91(2), 431–436. Wu, Y., 2005. The effects of state r&d tax credits in stimulating private r&d expenditure: A cross-state empirical analysis. Journal of Policy Analysis and Management 24(4), 785–802. Zachariadis, M., 2003. R&d, innovation, and technological progress: a test of the schumpeterian framework without scale effects. Canadian Journal of Economics 36(3), 566–586. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/57485 |