Tian, Guoqiang (2010): On the Existence of Price Equilibrium in Economies with Excess Demand Functions.
Preview |
PDF
MPRA_paper_57930.pdf Download (98kB) | Preview |
Abstract
This paper provides a price equilibrium existence theorem in economies where commodities may be indivisible and aggregate excess demand functions may be discontinuous. We introduce a very weak notion of continuity, called recursive transfer lower semi-continuity, which is weaker than transfer lower semi-continuity and in turn weaker than lower semicontinuity. It is shown that the condition, together with Walras’s law, guarantees the existence of price equilibrium in economies with excess demand functions. The condition is also necessary, and thus our results generalize all the existing results on the existence of price equilibrium in economies where excess demand is a function.
Item Type: | MPRA Paper |
---|---|
Original Title: | On the Existence of Price Equilibrium in Economies with Excess Demand Functions |
Language: | English |
Keywords: | Existence of price equilibrium; recursive transfer lower semi-continuity; discontinuity; excess demand function |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C62 - Existence and Stability Conditions of Equilibrium C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C72 - Noncooperative Games D - Microeconomics > D4 - Market Structure, Pricing, and Design > D44 - Auctions D - Microeconomics > D6 - Welfare Economics > D61 - Allocative Efficiency ; Cost-Benefit Analysis D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D82 - Asymmetric and Private Information ; Mechanism Design |
Item ID: | 57930 |
Depositing User: | Guoqiang Tian |
Date Deposited: | 14 Aug 2014 12:11 |
Last Modified: | 02 Oct 2019 16:58 |
References: | 1. Arrow, K. 1968. “Economic Equilibrium”, in Arrow (1983). 2. Arrow, K. 1972. “General Economic Equilibrium: Purpose, Analytic Techniques, Collective Choice”, in Arrow (1983). 3. Arrow, K. 1981. “Real and Nominal Magnitudes in Economics,” in The Crisis in Economic Theory (D. Bell and I. Kristol, eds.). New York: Basic Books. 4. Arrow, K. 1983. Collected Papers of Kenneth Arrow, vol. 2, General Equilibrium. Cambridge, Massachusetts, The Belknap Press of Harvard University Press. 5. Arrow, K. J. and G. Debreu. 1954. “Existence of an Equilibrium for a Competitive Economy”, Econometrica, 22 (3), 265-290. 6. Arrow, K. and F. Hahn. 1971. General Competitive Analysis. San Francisco, Holden Day. 7. Barbolla, R. and L. C. Corchon, “An elementary proof of the existence of a competitive equilibrium in a special case,” Quarterly Journal of Economics, 104 (1989), 385-389. 8. Beato, P., 1982. The existence of marginal cost pricing equilibrium with increasing returns. The Quarterly Journal of Economics 389, 669-688. 9. Bonnisseau, J. M., 1988. On two existence results in economies with increasing returns. Journal of Mathematical Economics 17, 193-207. 10. Bonnisseau, J. M., Cornet, B., 1988. Existence of equilibria when firms follow bounded losses pricing rules. Journal of Mathematical Economics 17, 119-147. 11. Bonnisseau, J. M., Cornet, B., 1990. Existence of marginal cost pricing equilibrium in an economy with several nonconvex firms. Econometrica 58, 661-682. 12. Brown D. J., Heller, G. M., Starr, R., 1992. Two-part marginal cost pricing equilibria: existence and efficiency. Journal of Economic Theory 57, 52-72. 13. Debreu, G. 1956. “Market Equilibrium”, in Debreu (1983). 14. Debreu, G. 1959. Theory of Value. New Haven and London, Yale University Press. 15. Debreu, G. 1974. “Excess Demand Functions”, Journal of Mathematical Economics, 1, 15-21. Reprinted in Debreu (1983). 16. Debreu, G. 1975. “Four Aspects of the Mathematical Theory of Economic Equilibrium”, in Debreu (1983). 17. Debreu, G. 1982. “Existence of Competitive Equilibrium” in Arrow, K. and M. Intrilligator (eds.), Handbook of Mathematical Economics (vol II). Amsterdam: North Holland Publishing Company. 18. Debreu, G. 1983. Mathematical Economics. Twenty Papers of Gerard Debreu. Cambridge: Cambridge University Press. 19. Debreu, G. 1989. “Existence of General Equilibrium”, in General Equilibrium, Eatwell, J., M. Milgate and P. Newman (eds.). The New Palgrave. New York and London: W.W.Norton. 20. Dierker, E. 1974. Topological Methods in Walrasian Economics. Berlin-New York- Heidelber Springer. 21. Gale, D. 1955. “The Law of Supply and Demand”, Mathematical Scandinavica 3. 22. Hahn, F. 1982. “Stability”, in Handbook of Mathematical Economics, Vol. II. Amsterdam: North Holland Publishing Company. 23. Hara, C. 2004. “Boundary Behavior of Excess Demand Functions without the Strong Monotonicity Assumption,” working paper. 24. Hildenbrand,W. 1983. “Introduction”, Mathematical Economics. Twenty Papers by Gerard Debreu. Cambridge: Cambridge University Press. 25. Hildenbrand, W. and A.P. Kirman. 1988. Equilibrium Analysis. Amsterdam: North Holland. 26. Kamiya, K., 1988. Existence and uniqueness of equilibria with increasing returns. Journal of Mathematical Economics 17, 149-178. 27. Kreps, D. M., 1990. A Course in Microeconomic Theory, Harvester Wheatsheaf, New York. 28. Mantel, R. R., 1974. “On the Characterization of Aggregate Excess Demand”, Journal of Economic Theory, 7, 48-353. 29. Mas-Colell, A. 1985. The Theory of General Economic Equilibrium: A Differentiable Approach. Cambridge: Cambridge University Press. 30. Mas-Colell, A., M. D Whinston, J. Green, 1995. Microeconomic Theory, Oxford: Oxford University Press. 31. McKenzie, L. 1954. “On Equilibrium in Graham’s Model of World Trade and Other Competitive Systems”, Econometrica, 22, 147-161. 32. Momi, T. 2003. “Excess demand functions with incomplete markets — a global result,” Journal of Economic Theory, 111, 240-250. 33. Nash, J. F. 1950. “Equilibirum Points in N-Person Games”, Proceedings of the National Academy of Sciences of the U.S.A., 36, 48-49. 34. Negishi, T. 1962. ”The Stability of a Competitive Economy: A Survey Article”, Econometrica, 30, 635-669. 35. Neuefeind,W. 1980. “Notes on Existence of Equilibrium Proofs and the Boundary Behavior of Supply,” Econometrica, 48, 1831-1837. 36. Nikaido, H. 1956. “On the Classical Multilateral Exchange Problem”, Metroeconomica, 8, 135-145. 37. Nikaido, H. 1968. Convex Structures and Economic Theory. New York: Academic Press. 38. Nikaido, H. 1970. Introduction to Sets and Mappings in Modern Economics. Amsterdam: North-Holland Publishing Company. 39. Nikaido, H. 1989. “Fixed Point Theorems”, in General Equilibrium, Eatwell, J., M. Milgate and P. Newman (eds.). The New Palgrave. New York and London: W.W. Norton. 40. Quah, J. 2004. “The existence of equilibrium when excess demand obeys the weak axiom,” working paper. 41. Scarf, H. 1960. “Some examples of global instability of the competitive equilibrium”, International Economic Review, 1, September. 42. Smale, S. 1981. “Global Analysis and Economics”, in Arrow, K. et al (eds.) Handbook of Mathematical Economics (vol. 1). Amsterdam: North Holland. 43. Smale, S. 1987. “Global Analysis in Economic Theory”, in General Equilibrium, Eatwell, J., M. Milgate and P. Newman (eds.). The New Palgrave. New York and London: W.W.Norton. 44. Sonnenschein, H. 1973. “Do Walras’ Identity and Continuity Characterize the Class of Community Excess Demand Functions?”, Journal of Economic Theory, 6, 345-354. 45. Starr, R. M. 1997. General Equilibrium Theory - An Introduction, Cambridge: Cambridge University Press. 46. Takayama, A. 1988. Mathematical Economics. Cambridge: Cambridge University Press. 47. Tian, G. (1992a): Generalizations of the KKM Theorem and Ky Fan Minimax Inequality, with Applications to Maximal Elements, Price Equilibrium, and Complementarity, Journal of Mathematical Analysis and Applications, 170, 457–471. 48. Tian, G. (1992b): “Existence of Equilibrium in Abstract Economies with Discontinuous Payoffs and Non-Compact Choice Spaces,” Journal of Mathematical Economics, 21, 379- 388. 49. Tian, G. (1992c): “On the Existence of Equilibria in Generalized Games,” International Journal of Game Theory, 20, 247-254. 50. Tian, G. (1993): Necessary and Sufficent Conditions for Maximization of a Class of Preference Relations, Review of Economic Studies, 60, 949-958. 51. Tian, G. (1994): “Generalized KKM Theorem and Minimax Inequalities and Their Applications,” Journal of Optimization Theory and Applications, 83, 375-389. 52. Tian, G. (2010): “Existence of Nash Equilibria in Games with Arbitrary Strategy Spaces and Preferences: A Full Characterization,” memio. 53. Tian, G. and Zhou, J. (1992): The Maximum Theorem and the Existence of Nash Equilibrium of (Generalized) Games Without Lower Semicontinuities, Journal of Mathematical Analysis and Applications, 166, 351-364. 54. Tian, G. and Zhou, Z. (1995): Transfer Continuities, Generalizations of the Weierstrass Theorem and Maximum Theorem: A Full Characterization, Journal of Mathematical Economics, 24, 281-303. 55. Wong, K. C. 1997, “Excess Demand Functions, Equilibrium Prices and Existence of Equilibrium,” Economic Theory, 10, 39-54. 56. Varian, H. R. 1992. Microeconomic Analysis, third edition,W.W. Norton & Company, New York. 57. Vohra, R., 1988. On the existence of equilibria in economies with increasing returns. Journal of Mathematical Economics 17, 179-192. 58. Zhou, J. Zhou, X. and Tian, G. (1992): Transfer Method for Characterizing the Existence of Maximal Elements of Binary Relations on Compact or Noncompact Sets, SIAM Journal on Optimization, 2, 360-375. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/57930 |