Ahmad, Ali and Francq, Christian (2014): Poisson qmle of count time series models.
Preview |
PDF
MPRA_paper_59804.pdf Download (577kB) | Preview |
Abstract
Regularity conditions are given for the consistency of the Poisson quasi-maximum likelihood estimator of the conditional mean parameter of a count time series. The asymptotic distribution of the estimator is studied when the parameter belongs to the interior of the parameter space and when it lies at the boundary. Tests for the significance of the parameters and for constant conditional mean are deduced. Applications to specific INAR and INGARCH models are considered. Numerical illustrations, on Monte Carlo simulations and real data series, are provided.
Item Type: | MPRA Paper |
---|---|
Original Title: | Poisson qmle of count time series models |
Language: | English |
Keywords: | Boundary of the parameter space; Consistency and asymptotic normality; Integer-valued AR and GARCH models; Non-normal asymptotic distribution; Poisson quasi-maximum likelihood estimator; Time series of counts. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 59804 |
Depositing User: | Christian Francq |
Date Deposited: | 04 Jan 2015 21:12 |
Last Modified: | 27 Sep 2019 05:04 |
References: | Andersson, J. and Karlis, D. (2014) A parametric time series model with covariates for integers in Z. Statistical Modelling, 14, 135--156. Andrews, D.W.K. (1999) Estimation when a parameter is on a boundary. Econometrica, 67, 1341--1383. Billingsley, P. (1961) The Lindeberg-Levy theorem for martingales. Proc. Amer. Math. Soc, 12, 88--792. Billingsley, P. (2008) Probability and measure. John Wiley \& Sons. Christou, V. (2013) Statistical theory for mixed poisson time series models. PhD thesis, University of Cyprus. Christou, V. and Fokianos, K. (2013) Quasi-Likelihood inference for nigative binomial time series models. Journal of Time Series Analysis, Published online in Wiley Online Library DOI: 10.1111/jtsa.12050. Cox, D.R., Gudmundsson, G., Lindgren, G., Bondesson, L., Harsaae, E., Laake, P., Juselius, K., Lauritzen, S.L. (1981) Statistical analysis of time series: Some recent developments [with discussion and reply]. Scandinavian Journal of Statistics, 93--115. Davis, R. A. and Liu, H. (2012) Theory and inference for a class of observation-driven models with application to time series of counts. arXiv preprint, 1204.3915. Efron, B. (1986) Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association, 81, 709--721. Ferland, R., Latour, A. Oraichi, D. (2006) Integer-Valued GARCH Process. Journal of Time Series Analysis, 27, 923--942. Fokianos, K. (2012) Count time series models. Handbook in statistics, Time series analysis: Methods and Applications, 30, 315--348. Fokianos, K., Rahbek, A. and Tjøstheim, D. (2009) Poisson Autoregression. Journal of the American Statistical Association, 104, 1430--1439. Fokianos, K. and Tjøstheim, D. (2011) Log-linear Poisson autoregression. Journal of Multivariate Analysis, 102, 563-578. Francq, C., Roy, R., and Zakoïan, J.-M. (2005) Diagnostic checking in ARMA models with uncorrelated errors. Journal of the American Statistical Association, 100, 532--544. Francq, C. and Zakoïan, J.-M. (2009) A tour in the asymptotic theory of GARCH estimation. Edts: T.G. Andersen, R.A. Davis, J-P. Kreiss, T. Mikosch. Springer Statistics. Francq, C. and Zakoian, J.-M. (2010) GARCH models: structure, statistical inference and financial applications. John Wiley & Sons. Gourieroux, C., Monfort, A., and Trognon, A. (1984) Pseudo maximum likelihood methods:Theory. Econometrica, 52, 681--700. Heinen, A. (2003) Modelling time series count data: an autoregressive conditional poisson model. Available at SSRN 1117187. Kachour, M. and Truquet, L. (2011) A p-order signed integer-valued autoregressive (SINAR(p)) model. Journal of Time Series Analysis, 32, 223--236. Liu, H. (2012) Some models for time series of counts. PhD thesis, Colombia university. McCullagh, P. (1983) Quasi-likelihood functions. The Annals of Statistics, 11, 59--67. Neumann, M. H. (2011) Absolute regularity and ergodicity of poisson count processes. Bernoulli, 17, 1268--1284. Tjøstheim, D. (2012) Some recent theory for autoregressive count time series. Test, 21, 413–-438. Tjøstheim, D. (2014) Statistical analysis of count time series models. Springer. Wedderburn, R.W. (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439--447. White, H. (1982) Maximum likelihood estimation of misspecified models. Econometrica, 50, 1--25. Zhu, F. (2011) A negative binomial integer-valued GARCH model. Journal of Time Series Analysis, 32, 54--67. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/59804 |