Henzel, Steffen and Lehmann, Robert and Wohlrabe, Klaus (2015): Nowcasting Regional GDP: The Case of the Free State of Saxony.
Preview |
PDF
MPRA_paper_63714.pdf Download (680kB) | Preview |
Abstract
We tackle the nowcasting problem at the regional level using a large set of indicators (regional, national and international) for the years 1998 to 2013. We explicitly use the ragged-edge data structure and consider the different information sets faced by a regional forecaster within each quarter. It appears that regional survey results in particular improve forecasting accuracy. Among the 10% best performing models for the short forecasting horizon, one fourth contain regional indicators. Hard indicators from the German manufacturing sector and the Composite Leading Indicator for Europe also deliver useful information for the prediction of regional GDP in Saxony. Unlike national GDP forecasts, the performance of regional GDP is similar across different information sets within a quarter.
Item Type: | MPRA Paper |
---|---|
Original Title: | Nowcasting Regional GDP: The Case of the Free State of Saxony |
English Title: | Nowcasting Regional GDP: The Case of the Free State of Saxony |
Language: | English |
Keywords: | nowcasting, regional gross domestic product, bridge equations, regional economic forecasting, mixed frequency |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E37 - Forecasting and Simulation: Models and Applications R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R11 - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes |
Item ID: | 63714 |
Depositing User: | Robert Lehmann |
Date Deposited: | 28 Apr 2015 06:08 |
Last Modified: | 28 Sep 2019 16:38 |
References: | Aastveit, K. A., Gerdrup, K. R., Jore, A. S. and Thorsrud, L. A. (2014). Nowcasting GDP in Real Time: A Density Combination Approach. Journal of Business & Economic Statistics, 32 (1), 48–68. Boysen-Hogrefe, J. (2015). Konjunkturbereinigungsverfahren der Länder: Eine Quasi- Echtzeitanalyse am Beispiel Schleswig-Holsteins. AStA Wirtschafts- und Sozialstatistisches Archiv, forthcoming, doi: 10.1007/s11943-014-0149-2. Carstensen, K., Henzel, S. R., Mayr, J. and Wohlrabe, K. (2009). IFOCAST: Methoden der ifo-Kurzfristprognose. ifo Schnelldienst, 62 (23), 15–28. Chow, G. C. and Lin, A. (1971). Best linear unbiased interpolation, distribution and exploration of time series by related series. The Review of Economics and Statistics, 53 (4), 372–375. Giannone, D., Reichlin, L. and Small, D. (2008). Nowcasting: The real-time informational content of macroeconomic data. Journal of Monetary Economics, 55 (4), 665–676. Henzel, S. R. and Rast, S. (2013). Prognoseeigenschaften von Indikatoren zur Vorhersage des Bruttoinlandsprodukts in Deutschland. ifo Schnelldienst, 66 (17), 39–46. Kholodilin, K. A. and Siliverstovs, B. (2006). On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence. Jahrbücher für Nationalökonomie und Statistik, 226 (3), 234–259. Kholodilin, K. A., Thomas, T. and Ulbricht, D. (2014). Do Media Data Help to Predict German Industrial Production? DIW Discussion Papers No. 1193. Kuzin, V., Marcellino, M. and Schumacher, C. (2011). MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area. International Journal of Forecasting, 27 (2), 529–542. Lehmann, R. and Wohlrabe, K. (2014a). Forecasting gross value-added at the regional level: Are sectoral disaggregated predictions superior to direct ones? Review of Regional Research, 34 (1), 61–90. Lehmann, R. and Wohlrabe, K. (2014b). Regional Economic Forecasting: State-of-the-Art Methodology and Future Challenges. Economics and Business Letters, 3 (4), 218–231. Lehmann, R. and Wohlrabe, K. (2015). Forecasting GDP at the Regional Level with Many Predictors. German Economic Review, 16 (2), 226–254. Marcellino, M. and Schumacher, C. (2010). Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP. Oxford Bulletin of Economics and Statistics, 72 (4), 518–550. Nierhaus, W. (2007). Vierteljährliche Volkswirtschaftliche Gesamtrechnungen für Sachsen mit Hilfe temporaler Disaggregation. ifo Dresden berichtet, 14 (4), 24–36. RWI (2010). Ermittlung der Konjunkturkomponenten für die Länderhaushalte zur Umsetzung der in der Föderalismuskommission II vereinbarten Verschuldungsbegrenzung. RWI Projektbericht Juni 2010. Schumacher, C. and Breitung, J. (2008). Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data. International Journal of Forecasting, 24 (3), 386–398. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/63714 |