Qian, Hang (2015): Inequality Constrained State Space Models.
Preview |
PDF
MPRA_paper_66447.pdf Download (1MB) | Preview |
Abstract
The standard Kalman filter cannot handle inequality constraints imposed on the state variables, as state truncation induces a non-linear and non-Gaussian model. We propose a Rao-Blackwellised particle filter with the optimal importance function for forward filtering and the likelihood function evaluation. The particle filter effectively enforces the state constraints when the Kalman filter violates them. We find substantial Monte Carlo variance reduction by using the optimal importance function and Rao-Blackwellisation, in which the Gaussian linear sub-structure is exploited at both the cross-sectional and temporal levels.
Item Type: | MPRA Paper |
---|---|
Original Title: | Inequality Constrained State Space Models |
Language: | English |
Keywords: | Rao-Blackwellisation, Kalman filter, Particle filter, Sequential Monte Carlo |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods |
Item ID: | 66447 |
Depositing User: | Hang Qian |
Date Deposited: | 05 Sep 2015 19:17 |
Last Modified: | 26 Sep 2019 15:12 |
References: | Athreya, K. B., Lahiri, S. N., 2006. Measure Theory and Probability Theory. New York: Springer. Black, F., 1995. Interest rates as options. The Journal of Finance 50 (5), 1371–1376. Box, G., Jenkins, G., 1970. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day. Carter, C. K., Kohn, R., 1994. On Gibbs sampling for state space models. Biometrika 81 (3), 541–553. Chen, R., Liu, J. S., 2000. Mixture Kalman filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62 (3), 493-508. Chopin, N., 2004. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. The Annals of Statistics 32 (6), 2385–2411. Cogley, T., Sargent, T. J., 2001. Evolving post-World War II U.S. inflation dynamics. In: NBER Macroeconomics Annual 2001, Volume 16. Cambridge: MIT Press, 331–388. Cogley, T., Sargent, T. J., 2005. Drift and volatilities: Monetary policies and outcomes in the post WWII U.S. Review of Economic Dynamics 8 (2), 262–302. Commandeur, J. J. F., Koopman, S. J., Ooms, M., 2011. Statistical software for state space methods. Journal of Statistical Software 41 (1), 1–18. De Jong, P., 1991. The diffuse Kalman filter. The Annals of Statistics 19 (2), 1073–1083. Diebold, F. X., Rudebusch, G. D., Aruoba, B. S., 2006. The macroeconomy and the yield curve: a dynamic latent factor approach. Journal of Econometrics 131 (1-2), 309–338. Doran, H. E., 1992. Constraining Kalman filter and smoothing estimates to satisfy time-varying restrictions. The Review of Economics and Statistics 74 (3), 568–72. Doucet, A., Godsill, S., Andrieu, C., 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10 (3), 197– 208. Doucet, A., Gordon, N., Krishnamurthy, V., 2001. Particle filters for state estimation of jump Markov linear systems. Signal Processing, IEEE Trans-actions on 49 (3), 613–624. Doucet, A., Johansen, A. M., 2009. A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later. Oxford: Oxford University Press. Durbin, J., Koopman, S. J., 2002. A simple and efficient simulation smoother for state space time series analysis. Biometrika 89 (3), 603-615. Durbin, J., Koopman, S. J., 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford: Oxford University Press. Gordon, N., Salmond, D., Smith, A., 1993. Novel approach to nonlinear/nongaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F 140 (2), 107-113. Greene, W. H., 2008. Econometric Analysis, Sixth Edition. New Jersey: Prentice Hall. Gupta, N., Hauser, R., 2008. Kalman filtering with equality and inequality state constraints, Manuscript: http://arxiv.org/pdf/0709.2791.pdf. Hull, J., 2003. Options, Futures and Other Derivatives, Fifth Edition. New Jersey: Prentice Hall. Hull, J., White, A., 1990. Pricing interest-rate-derivative securities. Review of Financial Studies 3(4), 573–592. Koop, G., Leon-Gonzalez, R., Strachan, R. W., 2010. Dynamic probabilities of restrictions in state space models: An application to the Phillips curve. Journal of Business & Economic Statistics 28 (3), 370–379. Koop, G., Potter, S. M., 2011. Time varying VARs with inequality restrictions. Journal of Economic Dynamics and Control 35 (7), 1126–1138. Liu, J. S., Chen, R., 1998. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93 (443), 1032– 1044. Pizzinga, A., 2012. Restricted Kalman Filtering, Theory, Methods, and Application. Springer: New York. Primiceri, G. E., 2005. Time varying structural vector autoregressions and monetary policy. Review of Economic Studies 72 (3), 821–852. Schon, T., Gustafsson, F., Nordlund, P., 2005. Marginalized particle filters for mixed linear/nonlinear state-space models. Signal Processing, IEEE Transactions on 53 (7), 2279–2289. Simon, D. J., Simon, D. L., 2005. Aircraft turbofan engine health estimation using constrained Kalman filtering. Journal of Engineering for Gas Turbines and Power 127(2), 323–328. Simon, D. J., Simon, D. L., 2010. Constrained Kalman filtering via density function truncation for turbofan engine health estimation. International Journal of Systems Science 41(2), 159–171. Stock, J. H., Watson, M. W., 2007. Why has U.S. inflation become harder to forecast? Journal of Money, Credit and Banking 39 (s1), 3–33. Tallis, G. M., 1961. The moment generating function of the truncated multi-normal distribution. Journal of the Royal Statistical Society. Series B (Methodological) 23 (1), 223-229. Vasicek, O., 1977. An equilibrium characterization of the term structure. Journal of Financial Economics 5 (2), 177 – 188. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/66447 |