Munich Personal RePEc Archive

Improving Markov switching models using realized variance

Liu, Jia and Maheu, John M (2015): Improving Markov switching models using realized variance.

[img]
Preview
PDF
MPRA_paper_71120.pdf

Download (492kB) | Preview

Abstract

This paper proposes a class of models that jointly model returns and ex-post variance measures under a Markov switching framework. Both univariate and multivariate return versions of the model are introduced. Bayesian estimation can be conducted under a fixed dimension state space or an infinite one. The proposed models can be seen as nonlinear common factor models subject to Markov switching and are able to exploit the information content in both returns and ex-post volatility measures. Applications to U.S. equity returns and foreign exchange rates compare the proposed models to existing alternatives. The empirical results show that the joint models improve density forecasts for returns and point predictions of return variance. The joint Markov switching models can increase the precision of parameter estimates and sharpen the inference of the latent state variable.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.