Logo
Munich Personal RePEc Archive

Study of Discrete Choice Models and Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

Giovanis, Eleftherios (2012): Study of Discrete Choice Models and Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA. Published in: Economic Analysis & Policy , Vol. 42, No. 1 (March 2012): pp. 79-95.

[thumbnail of MPRA_paper_71218.pdf]
Preview
PDF
MPRA_paper_71218.pdf

Download (278kB) | Preview

Abstract

In this study two approaches are applied for the prediction of the economic recession or expansion periods in USA. The first approach includes Logit and Probit models and the second is an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell membership functions. The in-sample period 1950-2006 is examined and the forecasting performance of the two approaches is evaluated during the out-of sample period 2007-2010. The estimation results show that the ANFIS model outperforms the Logit and Probit model. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.