Chikhi, Mohamed and Terraza, Michel (2002): Un essai de prévision non paramétrique de l'action France Télécom. Published in: Working paper LAMETA No. 07 (December 2003): pp. 1-22.
This is the latest version of this item.
PDF
MPRA_paper_77268.pdf Download (1MB) |
Abstract
Résumé: Nous étudions la puissance en terme de prévision des processus basés sur la méthode du noyau en utilisant la version non paramétrique du critère « Final Prediction error » pour identifier un processus fonctionnel hétéroscédastique. Cette identification nécessite une sélection rigoureuse des coefficients de Markov et du choix de la fenêtre qui détermine le degré de lissage de l’estimateur. Cette approche est comparée avec les résultats de l’estimation de modèles intégrés fractionnaires.
Abstract: We study the forecast’s power of the nonparametric processes based on the kernel method by using the nonparametric version of Final Prediction error criterion to identify a heteroscedastic functional process. This identification requires the selection of the Markov coefficients and the choice of bandwidth, which determines the degree of the estimator’s smoothing. This approach is compared with the estimation results of the fractional integrated models.
Item Type: | MPRA Paper |
---|---|
Original Title: | Un essai de prévision non paramétrique de l'action France Télécom |
English Title: | A nonparametric prediction test of the France Telecom stock price |
Language: | French |
Keywords: | Mots-clé: Sélection des retards, erreur de prédiction finale, noyau, fenêtre, processus autorégressif fonctionnel, prévision. Keywords: lag selection, final prediction error, kernel, bandwidth, functional autoregressive process, forecast. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 77301 |
Depositing User: | Mohamed CHIKHI |
Date Deposited: | 05 Mar 2017 23:44 |
Last Modified: | 30 Sep 2019 01:16 |
References: | Akaike, H. (1970), Statistical Predictor Identification. Annals of Institute of Statistical Mathematics, 22, 203-217 Auestad, B. and Tjostheim, D. (1990), Identification of nonlinear time series: first order characterization and order determination, Biometrika, 77, 4, 669-687. Bosq, D et Lecoutre, J.P. (1992), Analyse et prévision des séries chronologiques. Masson, Paris Bosq, D. (1979), Sur la prédiction non paramétrique de variables aléatoires et mesures aléatoires, Pub. Interne, UER de Mathématiques, Lilles. Bosq, D. (1996), Nonparametric statistics for stochastic processes. Lecture Notes in statistics, 110, Springer-verlag. Box, G and Pierce, D. (1970), Distribution of residual autocorrelation in autoregressive integrated moving average time series models, J, Ann., Statist., 6, 461-464 Brockmann, M. (1993), Locally adaptive bandwidth choice for kernel regression estimators. J. Amer. Statist. Assoc., 88, 1302-1309. Cheng, B. and Tong, H. (1992), On consistent nonparametric order determination and chaos, Journal of The Royal Statistical Society, Series B, 54, 427-449. Chiu, S.T. (1989), Bandwidth selection for kernel estimates with correlated noise. Statist. Probab. Lett., 8, 347-354. Collomb, G. (1980), Estimation non paramétrique de probabilités conditionnelles, C.R. Acad. sci . Paris Sér I Math . 291, 427-430 Doukhan, P. (1994), Mixing: Properties and examples, New York; Springer-Verlag Engle, R.F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, 50(4) 987-1007. Gannoun, A . (1991), Prédiction non paramétrique : médianogramme et méthode du noyau en estimation de la médiane conditionnelle, Statistique et Analyse des données, 16(23), 23-42 Geweke, J et Porter-Hudak, S. (1983), The Estimation and Application of Long Memory Time Series Models, Journal of Time Series Analysis, 4(4), 221-238. Gouriéroux, C. (1992), Modèles ARCH et applications financières. Economica, Paris Härdle, W and Chen, R. (1996), Nonparametric Time Series Analysis, a selective review with examples. Proceedings of the 50th session of the ISI, Peking. Härdle, W and Yang, L. (1996), Nonparametric autoregression with Multiplicative Volatility and additive Mean, Discussion paper 96-62, SFB 373, Humboldt Universität zu Berlin. Härdle, W, Lütkepohl, H and Chen, R. (1996), A review of Nonparametric Time Series Analysis, Discussion Paper 96-48, SFB 373, Humboldt Universität zu Berlin. Härdle, W, Tsybakov, A. B and Yang, L. (1998), Nonparametric vector autoregression, Journal of Statistical Planning and Inference 68, 221-245. Härdle, W. (1990), Applied nonparametric regression. Cambridge university press, Cambridge Masry, E and Tjostheim, D. (1995), Nonparametric estimation and identification of non-linear ARCH time series: strong convergence and asymptotic normality, Econometric Theory, 11, 258-289. Matzner-Lober, E . (1997), Prévision non paramétrique des processus stochastiques, Thèse de doctorat de l’université de Montpellier II Mizrach, B. (1995), A Simple Nonparametric Test for Independence. Nadaraya, E.A. (1964), On estimating regression, Theory probability and their applications, 9, 134-137 Robinson, P.M. (1983), Nonparametric estimators for time series. Journal of Time Series analysis, 4, 185-207 Rosa, M. A. C. (1993), Prévision robuste sous une hypothèse ergodique. Thèse de Doctorat de l’université de Toulouse I. Schwarz, G. (1978), Estimating the dimension of a Model. Annals of Statistics, 6,461-464. Silverman, B.W. (1986), Density estimation for Statistics and data analysis. Chapman & Hall. Sowell, F. (1992), Maximum Likelihood estimation of Stationary Univariate Fractionally Integrated Time Series Models. Journal of Econometrics, 53, 165-188. Stute, W. (1986), On almost sure convergence of conditional empirical distribution function, Ann. of Prob. , 14, 891-901 Tjostheim, D. and Auestad, B. (1994b), Nonparametric identification of nonlinear time series: selecting significant lags,Journal of American Statistical Association, 89, 1410-1419. Tschernig, R and Yang, L. (1998), Nonparametric Lag Selection for Time Series, Journal of Time Series Analysis, forthcoming. Tschernig, R. (1996), Nonlinearities in German Unemployment Rates: A Nonparametric Analysis, SFB 373 discussion paper 45. Ullah, A. (1988), Nonparametric estimation and hypothesis testing in econometric models, Empec, 13, 223-249. Vieu, P . (1995), order choice in nonlinear autoregressive models, statistics OPA , 26, 307-328. Watson, G.S. (1964), Smooth regression analysis, Sankhyä, A26, 359-372 Yang, L and Tschernig, R. (1999), Multivariate bandwidth selection for local linear regression, Journal of the royal statistical Society, Series B, 61, 793-815 Yang, L and Tschernig, R. (2000), Non- and semiparametric identification of seasonal nonlinear autoregression models, SFB 373. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/77301 |
Available Versions of this Item
-
Un essai de prévision non paramétrique de l'action France Télécom. (deposited 04 Mar 2017 01:50)
- Un essai de prévision non paramétrique de l'action France Télécom. (deposited 05 Mar 2017 23:44) [Currently Displayed]