Jin, Xin and Maheu, John M and Yang, Qiao (2017): Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices.
Preview |
PDF
MPRA_paper_81920.pdf Download (533kB) | Preview |
Abstract
This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood based estimation. Parametric and nonparametric versions are introduced. Due to the computational advantages of our approach we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture which leads to an infinite mixture of inverse-Wishart distributions. Applications to 10 assets and 60 assets show the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.
Item Type: | MPRA Paper |
---|---|
Original Title: | Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices |
Language: | English |
Keywords: | infinite hidden Markov model, Dirichlet process mixture, inverse-Wishart, predictive density, high-frequency data |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 81920 |
Depositing User: | John Maheu |
Date Deposited: | 12 Oct 2017 19:05 |
Last Modified: | 27 Sep 2019 07:02 |
References: | Asai, M. & McAleer, M. (2015), ‘Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance’, Journal of Econometrics 189(2), 251--262. Asai, M. & So, M. K. P. (2013), ‘Stochastic covariance models’, Journal of the Japan Statistical Society 43(2), 127–162. Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. & Shephard, N. (2011), ‘Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading’, Journal of Econometrics 162(2), 149 – 169. Bauer, G. H. & Vorkink, K. (2011), ‘Forecasting multivariate realized stock market volatility’, Journal of Econometrics 160(1), 93 – 101. Bauwens, L., Braione, M. & Storti, G. (2016), ‘Forecasting comparison of long term component dynamic models for realized covariance matrices’, Annals of Economics and Statistics (123/124), 103–134. Bauwens, L., Braione, M. & Storti, G. (2017), ‘A dynamic component model for forecasting high-dimensional realized covariance matrices’, Econometrics and Statistics 1, 40 – 61. Callot, L. A. F., Kock, A. B. & Medeiros, M. C. (2017), ‘Modeling and forecasting large realized covariance matrices and portfolio choice’, Journal of Applied Econometrics 32(1), 140–158. Cech, F. & Barunik, J. (2017), ‘On the modelling and forecasting of multivariate realized volatility: generalized heterogeneous autoregressive (ghar) model’, Journal of Applied Econometrics 36, 181–206. Chib, S. (1996), ‘Calculating posterior distributions and modal estimates in Markov mixture models’, Journal of Econometrics 75, 79–97. Chiriac, R. & Voev, V. (2011), ‘Modelling and forecasting multivariate realized volatility’, Journal of Applied Econometrics 26(6), 922–947. Ding, Z. & Engle, R. (2001), Large scale conditional covariance matrix modeling, estimation and testing. NYU Working Paper No. FIN-01-029. Engle, R., Ng, V. K. & Rothschild, M. (1990), ‘Asset pricing with a factor-arch covariance structure: Empirical estimates for treasury bills’, Journal of Econometrics 45(1-2), 213– 237. Escobar, M. & West, M. (1995), ‘Bayesian density estimation and inference using mixtures’, Journal of the American Statistical Association 90, 577–588. Fleming, J., Kirby, C. & Ostdiek, B. (2003), ‘The economic value of volatility timing using realized volatility’, Journal of Financial Economics 67(3), 473 – 509. Fox, E., Sudderth, E., Jordan, M. & Willsky, A. (2011), ‘A sticky hdp-hmm with application to speaker diarization’, Annals of Applied Statistics 5, 1020–1056. Golosnoy, V., Gribisch, B. & Liesenfeld, R. (2012), ‘The conditional autoregressive Wishart model for multivariate stock market volatility’, Journal of Econometrics 167(1), 211–223. Gourieroux, C., Jasiak, J. & Sufana, R. (2009), ‘The Wishart autoregressive process of multivariate stochastic volatility’, Journal of Econometrics 150, 167–181. Hansen, P. R., Lunde, A. & Voev, V. (2014), ‘Realized beta GARCH: A multivariate GARCH model with realized measures of volatility’, Journal of Applied Econometrics 29(5), 774– 799. Jin, X. & Maheu, J. M. (2013), ‘Modeling realized covariances and returns’, Journal of Financial Econometrics 11(2), 335–369. Jin, X. & Maheu, J. M. (2016), ‘Bayesian semiparametric modeling of realized covariance matrices’, Journal of Econometrics 192(1), 19–39. Kalli, M., Griffin, J. & Walker, S. (2011), ‘Slice sampling mixture models’, Statistics and Computing 21, 93–105. Noureldin, D., Shephard, N. & Sheppard, K. (2012), ‘Multivariate high-frequency-based volatility (HEAVY) models’, Journal of Applied Econometrics 27(6), 907–933. Noureldin, D., Shephard, N. & Sheppard, K. (2014), ‘Multivariate rotated arch models’, Journal of Econometrics 179(1), 16 – 30. Opschoor, A., Janus, P., Lucas, A. & Dijk, D. V. (2017), ‘New heavy models for fat-tailed realized covariances and returns’, forthcoming Journal of Business & Economic Statistics pp. 1–15. Papaspiliopoulos, O. (2008), A note on posterior sampling from dirichlet mixture models. manuscript, Department of Economics, Universitat Pompeu Fabra. Press, S. J. (2012), Applied multivariate analysis: using Bayesian and frequentist methods of inference, Courier Dover Publications. Sethuraman, J. (1994), ‘A constructive definition of Dirichlet priors’, Statistica Sinica 4, 639–650. Shen, K., Yao, J. & Li, W. K. (2015), ‘Forecasting high-dimensional realized volatility matrices using a factor model’, arXiv preprint arXiv:1504.03454 . Sheppard, K. & Xu, W. (2014), Factor high-frequency based volatility (HEAVY) models. Available at SSRN: http://ssrn.com/abstract=2442230. Tao, M., Wang, Y., Yao, Q. & Zou, J. (2011), ‘Large volatility matrix inference via combining low-frequency and high-frequency approaches’, Journal of the American Statistical Association 106(495), 1025–1040. Teh, Y., Jordan, M., Beal, M. & Blei, D. (2006), ‘Hierarchical Dirichlet processes’, Journal of the American Statistical Association 101, 1566–1581. Van Gael, J., Saatci, Y., Teh, Y. & Ghahramani, Z. (2008), Beam sampling for the infinite hidden Markov model, in ‘Proceedings of the 25th International Conference on Machine Learning:’, pp. 1088–1095. Walker, S. G. (2007), ‘Sampling the Dirichlet mixture model with slices’, Communications in Statistics – Simulation and Computation 36, 45–54. West, M. & Harrison, J. (1997), Bayesian Forecasting and Dynamic Models, Springer Series in Statistics, New York. Yu, P. L., Li, W. K. & Ng, F. C. (2017), ‘The generalized conditional autoregressive Wishart model for multivariate realzied volatility’, forthcoming Journal of Business & Economic Statistics. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/81920 |