Aknouche, Abdelhakim and Demouche, Nacer (2018): Ergodicity conditions for a double mixed Poisson autoregression.
Preview |
PDF
MPRA_paper_88843.pdf Download (163kB) | Preview |
Abstract
We propose a double mixed Poisson autoregression in which the intensity, scaled by a unit mean independent and identically distributed (iid) mixing process, has different regime specifications according to the state of a finite unobserved iid chain. Under some contraction in mean conditions, we show that the proposed model is strictly stationary and ergodic with a finite mean. Applications to various count time series models are given.
Item Type: | MPRA Paper |
---|---|
Original Title: | Ergodicity conditions for a double mixed Poisson autoregression |
English Title: | Ergodicity conditions for a double mixed Poisson autoregression |
Language: | English |
Keywords: | Double mixed Poisson autoregression, negative binomial mixture INGARCH model, ergodicity, weak dependence, contraction in mean |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C40 - General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C46 - Specific Distributions ; Specific Statistics C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C50 - General |
Item ID: | 88843 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 14 Sep 2018 15:30 |
Last Modified: | 26 Sep 2019 08:15 |
References: | Aknouche, A.; Rabehi, N. (2010). On an independent and identically distributed mixture bilinear time series model. Journal of Time Series Analysis, 31, 113-131. Aknouche, A., Bentarzi, W.; Demouche, N. (2018). On periodic ergodicity of a general periodic mixed Poisson autoregression. Statistics & Probability Letters, 134, 15-21. Bauwens, L., Preminger, A.; Rombouts, J. (2010). Theory and inference for a Markov Switching GARCH model. Econometrics Journal, 13, 218-244. Cox, D.R. (1981). Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics, 8, 93-115. Christou, V.; Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis, 35, 55-78. Davis, R.A.; Liu, H. (2016). Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica, 26, 1673-1707. Dean, C., Lawless, J.F.; Willmot, G.E. (1989). A mixed Poisson-Inverse-Gaussian regression model. The Canadian Journal of Statistics, 17, 171-181. Dedecker, J.; Prieur, C. (2004). Coupling for τ-dependent sequences and applications. Journal of Theoretical Probability, 17, 861-885. Diop, M.L., Diop, A.; Diongue, A.K. (2016). A mixture integer-valued GARCH model. REVSTAT - Statistical Journal, 14, 245-271. Doukhan, P., Fokianos, K.; Tjøstheim, D. (2012). On weak dependence conditions for Poisson autoregressions. Statistics and Probability Letters, 82, 942-948. Doukhan, P.; Wintenberger, O. (2008). Weakly dependent chains with infinite memory. Stochastic Processes and their Applications, 118, 1997-2013. Francq, C.; Zakoian, J.M. (2008). Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference. Computational Statistics & Data Analysis, 52, 3027-3046. Haas, M., Mittnik, S.; Paollela, M.S. (2004). A new approach to Markov-Switching GARCH models. Journal of Financial Econometrics, 4, 493-530. Hind, J. (1982). Compound Poisson regression models. Proceedings of the International Conference on Generalised Linear Models, pp 109-121. Zhu, F. (2011). A negative binomial integer-valued GARCH model. Journal of Time Series, 32, 54-67. Zhu, F., Li, Q.; Wang, D. (2010). A mixture integer-valued ARCH model. Journal of Statistical Planning and Inference, 140, 2025-2036. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/88843 |