Paul, Satya and Shankar, Sriram (2018): Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier.
Preview |
PDF
MPRA_paper_87437.pdf Download (236kB) | Preview |
Abstract
This paper proposes a stochastic frontier panel data model which includes time-invariant unobserved heterogeneity along with the efficiency effects. Following Paul and Shankar (2018), the efficiency effects are specified by a standard normal cumulative distribution function of exogenous variables which ensures the efficiency scores to lie in a unit interval. This specification eschews one-sided error term present in almost all the existing inefficiency effects models. The model parameters can be estimated by non-linear least squares after removing the individual effects by the usual within transformation or using non-linear least squares dummy variables (NLLSDV) estimator. The efficiency scores are directly calculated once the model is estimated. An empirical illustration based on widely used panel data on Indian farmers is presented.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier |
English Title: | Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier |
Language: | English |
Keywords: | Fixed effects; Stochastic frontier; Technical efficiency; Standard normal cumulative distribution function; Non-linear least squares. |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q12 - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets |
Item ID: | 89235 |
Depositing User: | Dr Sriram Shankar |
Date Deposited: | 28 Sep 2018 20:26 |
Last Modified: | 28 Sep 2019 06:05 |
References: | Aigner, D.J., Lovell, C.A.K., Schmidt, P., 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics. 6, 21-37. Alvarez, A., Amsler, C., Orea, L., Schmidt, P., 2006. Interpreting and testing the scaling property in models where inefficiency depends on firm characteristics. Journal of Productivity Analysis. 25, 201–212. Barrett, C. B., 1996. On price risk and the inverse farm size–productivity relationship. Journal of Development Economics. 51,193-215. Battese, G., Coelli, T., Colby, T., 1989. Estimation of frontier production functions and the efficiencies of Indian farms using panel data from ICRISTAT’s village level studies. Journal of Quantitative Economics. 5, 327-348. Battese, G.E., Coelli, T.J., 1988. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics, 30, 387–399. Battese, G., Coelli, T., 1992. Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. Journal of Productivity Analysis. 3, 153-169. Battese, G.E., Coelli, T.J., 1995. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics. 20, 325-332. Belotti, F., Ilardi, G., 2017. Consistent inference in fixed-effects stochastic frontier models. Journal of Econometrics. 202, 161-177. Benjamin, D., 1995. Can unobserved land quality explain the inverse productivity relationship? Journal of Development Economics. 46, 51–84. Bhalla, S. S., and Roy, P., 1988. Mis-specification in farm productivity analysis: The role of land quality. Oxford Economic Papers. 40, 55-73. Carter, M., 1984. Identification of the inverse relationship between farm size and productivity: An empirical analysis of peasant agricultural production. Oxford Economic Papers. 36, 131–146. Caudill, S.B., Ford, J.M., 1993. Biases in frontier estimation due to heteroscedasticity. Economic Letters. 41, 17–20. Caudill, S.B., Ford, J.M., Gropper, D.M., 1995. Frontier estimation and firm-specific inefficiency measures in the presence of heteroscedasticity. Journal of Business & Economic Statistics. 13, 105–111. Chen, Y., Schmidt, P., Wang, H., 2014. Consistent estimation of the fixed effects stochastic frontier model. Journal of Econometrics. 181, 65-76. Coelli, T. J., Battese, G. E., 1996. Identification of factors which influence the technical inefficiency of Indian farmers. Australian Journal of Agricultural Economics. 40, 103-28. Colombi, R., Kumbhakar, S.C., Martini, G., Vittadini, G., 2014. Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency. Journal of Productivity Analysis. 42, 123-136. Deprins, D., 1989. Estimation de frontieres de production et Mesures de l’Efficacite Technique. Louvain-la-Neuve, Belgium: CIACO. Deprins, P., Simar, L., 1989a. Estimating technical efficiencies with corrections for environmental conditions with an application to railway companies. Annals of Public and Cooperative Economics. 60, 81-102. Deprins, P., Simar, L., 1989b. Estimation de frontieres deterministes avec factuers exogenes d’inefficacite. Annales d’Economie et de Statistique. 14, 117–150. Eswaran, M., Kotwal, A., 1986. Access to capital and agrarian production organization. Economic Journal. 96, 482-498. Filippini, M., Greene, W., 2016. Persistent and transient productive inefficiency: a maximum simulated likelihood approach. Journal of Productivity Analysis. 45, 187–196. Gonzalez-Farias, G., Dominguez-Molina, J., Gupta, A., 2004. Additive properties of skew normal random vectors. Journal of Statistical Planning and Inference. 126, 521-534. Greene, W.H., 2005. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. Journal of Econometrics. 126, 269-303. Hadri, K., 1999. Estimation of a doubly heteroskedastic stochastic frontier cost function. Journal of Business & Economic Statistics. 17, 359–363. Hansson, H., 2008. Are larger farms more efficient? A farm level study of the relationships between efficiency and size on specialized dairy farms in Sweden. Agricultural and Food Science. 17, 325-337. Helfand, S.M., Levine, E.S., 2004. Farm size and the determinants of productive efficiency in the Brazilian Center-West. Agricultural Economics. 31, 241-249. Heltberg, R., 1998. Rural market imperfections and the farm-size productivity relationship: Evidence from Pakistan. World Development. 26, 1807-1826. Horrace, W., Schmidt, P., 1996. Confidence statements for efficiency estimates from stochastic frontier models. Journal of Productivity Analysis, 7, 257-282. Huang, C.J., Liu, J.T., 1994. Estimation of a non-neutral stochastic frontier production function. Journal of Productivity Analysis. 5, 171–180. Jondrow, J., Lovell, C.A.K., Materov, I.S., Schmidt P., 1982. On the estimation of technical inefficiency in stochastic frontier production function model. Journal of Econometrics. 19, 233–238. Kagin, J., Taylor, J.E., Yúnez-Naude, A., 2016. Inverse productivity or inverse efficiency? Evidence from Mexico. Journal of Development Studies. 52, 396-411. Kalirajan, K., 1981. An econometric analysis of yield variability in paddy production. Canadian Journal of Agricultural Economics. 29, 283-294. Kumbhakar, S.C., 1990. Production frontiers, panel data, and time-varying technical inefficiency, Journal of Econometrics. 46, 201-212. Kumbhakar, S. C., 1991. Estimation of technical inefficiency in panel data models with firm and time-specific effects. Economics Letters. 36, 43-48. Kumbhakar, S.C., Ghosh, S., McGuckin, J.T., 1991. A generalized production frontier approach for estimating determinants of inefficiency in U.S. dairy farms. Journal of Business & Economic Statistics. 9, 279-286. Kumbhakar, S.C., Heshmati, A., 1995. Efficiency measurement in Swedish dairy farms: An application of rotating panel data, 1976-88. American Journal of Agricultural Economics. 77, 660-674. Kumbhakar, S.C., Hjalmarsson L., 1993. Technical efficiency and technical progress in Swedish dairy farms. In: Fried HO, Lovell CAK, Schmidt SS (eds) The measurement of productive efficiency-techniques and applications, Oxford University Press. 256-270 Kumbhakar, S.C., Hjalmarsson, L., 1995. Labour-use efficiency in Swedish social insurance offices. Journal of Applied Econometrics. 10, 33-47. Kumbhakar, S., Lovell, K., 2000. Stochastic Frontier Analysis, Cambridge University Press, Cambridge, UK. Kumbhakar, S. C., Lien G., Hardaker J. B., 2012. Technical efficiency in competing panel data models: a study of Norwegian grain farming. Journal of Productivity Analysis. 41, 321-337. Lancaster, T., 2000. The incidental parameters problem since 1948. Journal of Econometrics. 95, 391-414. Meeusen, W., van den Broeck, J., 1977. Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review. 18, 435-444. Neyman, J., Scott, E., 1948. Consistent estimates based on partially consistent observations. Econometrica. 16, 1-32. Parmeter, C.F., Kumbhakar, S.C., 2014. Efficiency analysis: A primer on recent advances. Foundations and Trends(R) in Econometrics, Now publishers, 7, 191-385. Parmeter, C. F., Wang, H. J., Kumbhakar, S.C., 2017. Nonparametric estimation of the determinants of inefficiency. Journal of Productivity Analysis, 47, 205-221. Paul, S., Shankar, S., 2018. On estimating efficiency effects in a stochastic frontier model. European Journal of Operational Research. Forthcoming (10.1016/j.ejor.2018.05.052) Pitt, M.M., Lee, M. F., 1981. The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics. 9, 43-64. Robinson, P.M., 1988. Root-N-consistent semiparametric regression. Econometrica. 56, 931-954. Schmidt, P., Sickles, R.C., 1984. Production frontiers and panel data. Journal of Business & Economic Statistics. 2, 367–374. Sen, A., 1966. Peasants and dualism with or without surplus labor. The Journal of Political Economy. 74, 425-450. Simar, L., Lovell, C.A.K., van den Eeckaut, P., 1994. Stochastic frontiers incorporating exogenous influences on efficiency. Discussion Papers No. 9403, Institut de Statistique, Universite de Louvain. Simar, L., Wilson, P.W., 2007. Estimation and inference in two-stage, production processes. Journal of Econometrics. 136, 31-64. Tsionas, E.G., Kumbhakar, S.C., 2012. Firm heterogeneity, persistent and transient technical inefficiency: a generalized true random-effects model. Journal of Applied Econometrics. 29, 110-132. Wang, H.J., 2002. Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model. Journal of Productivity Analysis. 18, 241-253. Wang, H.J., Ho, C.W., 2010. Estimating fixed-effect panel stochastic frontier models by model transformation. Journal of Econometrics. 157, 286-296. Wang, H.J., Schmidt, P., 2002. One-step and two-step estimation of the effects of exogenous variables on technical efficiency levels. Journal of Productivity Analysis. 18, 129-144. White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica. 48, 817–838. Wikstrom, D., 2015. Consistent method of moments estimation of the true fixed effects model. Economics Letters. 137, 62–69. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/89235 |
Available Versions of this Item
-
Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier. (deposited 16 Jun 2018 15:43)
- Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier. (deposited 28 Sep 2018 20:26) [Currently Displayed]