Logo
Munich Personal RePEc Archive

Improving Forecast Accuracy of Financial Vulnerability: PLS Factor Model Approach

Kim, Hyeongwoo and Ko, Kyunghwan (2018): Improving Forecast Accuracy of Financial Vulnerability: PLS Factor Model Approach.

[thumbnail of MPRA_paper_89449.pdf] PDF
MPRA_paper_89449.pdf

Download (1MB)

Abstract

We present a factor augmented forecasting model for assessing the financial vulnerability in Korea. Dynamic factor models often extract latent common factors from a large panel of time series data via the method of the principal components (PC). Instead, we employ the partial least squares (PLS) method that estimates target specific common factors, utilizing covariances between predictors and the target variable. Applying PLS to 198 monthly frequency macroeconomic time series variables and the Bank of Korea's Financial Stress Index (KFSTI), our PLS factor augmented forecasting models consistently outperformed the random walk benchmark model in out-of-sample prediction exercises in all forecast horizons we considered. Our models also outperformed the autoregressive benchmark model in short-term forecast horizons. We expect our models would provide useful early warning signs of the emergence of systemic risks in Korea's financial markets.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.