Ha-Huy, Thai (2019): Savage's theorem with atoms.
PDF
MPRA_paper_94516.pdf Download (577kB) |
Abstract
The famous theorem of Savage is based on the richness of the states space, by assuming a \textit{continuum} nature for this set. In order to fill the gap, this article considers Savage's theorem with discrete state space. The article points out the importance the existence of pair event in the existence of utility function and the subjective probability. Under the discrete states space, this can be ensured by the intuitive \textit{atom swarming} condition. Applications for the establishment of an inter-temporal evaluation \emph{\`a la } Koopman \cite{K60}, \cite{K72}, and for the configuration under \textit{unlikely atoms} of Mackenzie \cite{Mackenzie2018} are provided.
Item Type: | MPRA Paper |
---|---|
Original Title: | Savage's theorem with atoms |
English Title: | Savage's theorem with atoms |
Language: | English |
Keywords: | Savage theorem, Koopman representation, expected utility function, atom swarming. |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C00 - General D - Microeconomics > D1 - Household Behavior and Family Economics > D10 - General D - Microeconomics > D9 - Intertemporal Choice > D90 - General |
Item ID: | 94516 |
Depositing User: | Dr Thai Ha-Huy |
Date Deposited: | 18 Jun 2019 00:04 |
Last Modified: | 27 Sep 2019 11:03 |
References: | Anscombe F., J. \& R. J. Aumann (1962): A definition of subjective probability. \emph{The Annals of Mathematical Statistics} \textbf{34}: 199-205. Arrow, K. (1970): Essays in the Theory of Risk-Bearing. \textit{North-Holland.} Chateauneuf, A. (1985): On the existence of a probability measure compatible with a total preoder on a boolean algebra. \emph{Journal of Mathematical Economics} \textbf{14}: 43-52. Chateauneuf, A. \& J. Y. Jaffray (1984): Archimedean qualitative probabilities. \emph{Journal of Mathematical Psychology} \textbf{28}: 191-204. Debreu, G. (2015): Mathematical economics: Twenty papers of Gerard Debreu. \emph{Cambridge University Press.} de Finetti, B. (1937): La pr\'evision: ses lois logiques, ses sources subjectives. \emph{Annales d'Institut Henri Poincar\'e}, \textbf{7}: 1-68. Etner, J., M. Jeleva, \& J. M. Tallon (2012): Decision theory under ambiguity. \emph{Journal of Economic Survey} \textbf{26}: 234-270. Fishburn, P., C. (1986): The axioms of subjective probability. \emph{Statistical Science}, \textbf{1}: 335-345. Ghirardato, P., F. Maccheroni, M. Marinacci, M. Sinischalchi (2003): A subjective spin on roulette wheels. \textit{Econometrica} \textbf{71}: 1897-1908. Gilboa, I. (2009): Theory of decision under uncertainty. \emph{Cambridge University Press}. Gilboa, I. \& D. Schmeidler (1989): Maximin expected utility with non-unique prior. \emph{Journal of Mathematical Economics} \textbf{18}: 141-153. Gilboa, I. \& D. Schmeidler (1993): Updating ambigous beliefs. \emph{Journal of Economic Theory} \textbf{59}: 33-49. Gilboa, I., F. Macheronni, M. Marinacci \& D. Schemeidler (2010): Objective and subjective rationality in a multiple prior model. \emph{Econometrica} \textbf{78}: 755-770. Gul, F. (1992): Savage's Theorem with a Finite Number of States. \emph{Journal of Economic Theory} \textbf{57}: 99-110. Kochov, A. (2013): Geometric Discounting in Discrete, Infinite-Horizon Choice Problems. \emph{Working paper}. Koopmans, T., J. (1960): Stationary Ordinal Utility and Impatience, \emph{Econometrica} \textbf{28}: 287-309. Koopmans, T., J. (1972): Representation of Preference Orderings over Time. In: \textsl{Decision and Organisation.} McGuire, C. and R.\ Radner, eds.\ Amsterdam: North-Holland. Kopylov, I. (2007): Subjective probabilities on “small” domains. \textit{Journal of Economic Theory} \textbf{133}: 236-265. Kopylov, I. (2010): Simple axioms for countably additive subjective probability. \textit{Journal of Mathematical Economics} \textbf{46}: 867-876. Kreps, D. (1988): Notes on the theory of choice. \emph{Boulder, CO: Westview Press, Inc}. Kraft, C., J. Pratt \& A. Seidenberg (1959): Intuitive Probability on Finite Sets. \emph{Annals of Mathematical Statistics} \textbf{30}, 408-419. Laibson, D. (1997): Golden Eggs and Hyperbolic Discounting. \emph{Quarterly Journalof Economics} \textbf{112}: 443-478. Machina, M., D. Schmeidler (1992): A more robust definition of subjective probability. \textit{Econometrica} \textbf{57}: 558-571. Mackenzie, A. (2019): A foundation for probabilistic beliefs with or without atoms. \emph{Theoretical Economics} \textbf{14}, 709-778. Montiel Olea, J., L. \& T. Strzalecki (2014): Axiomatization and Measurement of Quasi-Hyperbolic discounting. \emph{Quartely Journal of Economics}, 1449-1499. Savage (1954): The foundation of statistics. \emph{Dover publication}. Scott, D. (1964): Measurement strutures and linear inequalities. \emph{Journal of Mathematical Psychology} \textbf{1}: 233-247. Villegas, C (1964): On qualitative probability $\sigma-$algebra. von Neumann, J. \& O. Morgenstien (1947): Theory of Games and Economic Behavior. \emph{2nd ed., Princeton Univ. Press, Princeton, New Jersey}. Wakker, P. (1993): Savage's Axioms Usually Imply Violation of Strict Stochastic Dominance. \emph{The Review of Economic Studies} \textbf{60}: 487-493. Wakker, P., H. A unified derivation of classical subjective expected utility models through cardinal utility. \textit{Journal of Mathematical Economics} \textbf{32}: 1-19. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/94516 |