HaHuy, Thai (2019): A tale of two Rawlsian criteria.
This is the latest version of this item.
PDF
MPRA_paper_95853.pdf Download (460kB) 
Abstract
This work considers optimization problems under Rawls and maximin with multiple discount factors criteria. It proves that though these criteria are different, they have the same optimal value and solution.
Item Type:  MPRA Paper 

Original Title:  A tale of two Rawlsian criteria 
Language:  English 
Keywords:  Maximin principle, Ralws criterion, Ramsey criterion 
Subjects:  C  Mathematical and Quantitative Methods > C6  Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61  Optimization Techniques ; Programming Models ; Dynamic Analysis D  Microeconomics > D1  Household Behavior and Family Economics > D11  Consumer Economics: Theory D  Microeconomics > D9  Intertemporal Choice > D90  General 
Item ID:  96684 
Depositing User:  Dr Thai HaHuy 
Date Deposited:  31 Oct 2019 16:13 
Last Modified:  31 Oct 2019 16:13 
References:  AlvarezCuadrado, F. \& N. Van Long (2009): A mixed Bentham  Rawls criterion for intergenerational equity: Theory and implications. \textit{Journal of Environmental Economics and Management} \textbf{58}, 154168. Arrow, K. J. (1973): Rawls's Principle of Just Savings. \emph{The Swedish Journal of Economics} \textbf{75}, 323335. Asheim, G. B. \& I. Ekeland (2016): Resource conservation across generations in a Ramsey  Chichilnisky model. \emph{Economic Theory} \textbf{61}, 611639. \bibitem{BM2003} Basu, K. \& T. Mitra (2003): Aggregating infinite utility streams with intergenerational equity: The impossibility of being paretian. \textit{Econometrica}, \textbf{71}, 15571563. Calvo, G. A. (1977): Optimal Maximin Accumulation With Uncertain Future Technology. \emph{Econometrica} \textbf{45}: 317327. Chambers, C. \& F. Echenique (2018): On Multiple Discount Rates. \emph{Econometrica} \textbf{86}: 13251346. Dana, R. A. \& C. Le Van (1990): On the Bellman equation of the overtaking criterion. \textit{Journal of Optimization Theory and Applications} \textbf{78}, 605–612. Chichilnisky, G. (1996): An axiomatic approach to sustainable development. \textit{Social Choice and Welfare} \textbf{13}, 219–248. Chichilnisky, G. (1997): What is sustainable development? \textit{Land Economics} \textbf{73}, 467–491. Drugeon, J., P., T. HaHuy \& T. D. H. Nguyen (2018): On maximin dynamic programming and the rate of discount. \emph{Economic Theory} \textbf{67}, 703729. Gale, D. (1967): On optimal development in a multisector economy, \textit{Review of Economic Studies}, Vol. \textbf{34}, No.97 (1967), 118. Gilboa, I. \& D. Schmeidler (1989): Maxmin Expected utility with nonunique prior, \textit{Journal of mathematical economics,} \textbf{18}, 141153. HaHuy, T. \& T. T. M. Nguyen (2019): Saving and dissaving under \emph{RamseyRawls} criterion, \textit{working paper}. Le Van, C. \& L. Morhaim (2002): Optimal growth models with bounded or unbounded returns: a unifying approach. \emph{Journal of Economic Theory} \textbf{105}, 157187. Le Van, C. \& L. Morhaim (2006): On optimal growth models when the discount factor is near 1 or equal to 1. \textit{International Journal of Economic Theory} \textbf{2}, 5576. Solow, R., M. (1974): Intergenerational equity and exhaustible resources. \textit{The Review of Economic Studies} \textbf{41}, 29–45. Stokey, N., L. \& R. Lucas Jr with E. Prescott (1989): \newblock Recursive methods in Economic Dynamics. \emph{Harvard University Press}. Rawls, J. (1971): A Theory of Justice. \emph{Oxford, England: Clarendon}. Savage (1954): The foundation of statistics. \emph{Dover publication}. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/96684 
Available Versions of this Item

A tale of two Rawlsian criteria. (deposited 19 Aug 2019 14:59)

A tale of two Rawlsian criteria. (deposited 11 Sep 2019 05:44)
 A tale of two Rawlsian criteria. (deposited 31 Oct 2019 16:13) [Currently Displayed]

A tale of two Rawlsian criteria. (deposited 11 Sep 2019 05:44)