Fries, Sébastien (2018): Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds.
Preview |
PDF
MPRA_paper_97353.pdf Download (1MB) | Preview |
Abstract
Noncausal, or anticipative, alpha-stable processes generate trajectories featuring locally explosive episodes akin to speculative bubbles in financial time series data. For (X_t) a two-sided infinite alpha-stable moving average (MA), conditional moments up to integer order four are shown to exist provided (X_t) is anticipative enough. The functional forms of these moments at any forecast horizon under any admissible parameterisation are obtained by extending the literature on arbitrary bivariate alpha-stable random vectors. The dynamics of noncausal processes simplifies during explosive episodes and allows to express ex ante crash odds at any horizon in terms of the MA coefficients and of the tail index alpha. The results are illustrated in a synthetic portfolio allocation framework and an application to the Nasdaq and S&P500 series is provided.
Item Type: | MPRA Paper |
---|---|
Original Title: | Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds |
Language: | English |
Keywords: | Noncausal processes, Multivariate stable distributions, Conditional dependence, Extremal dependence, Explosive bubbles, Prediction, Crash odds, Portfolio allocation |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 97353 |
Depositing User: | Sébastien Fries |
Date Deposited: | 04 Dec 2019 14:16 |
Last Modified: | 04 Dec 2019 14:16 |
References: | Andrews, B., Calder, M., and R., Davis. 2009. Maximum likelihood estimation for α-stable autoregressive process. Annals of Statistics, 37, 1946-1982. Aksaraylı, M., and O., Pala. 2018. A polynomial goal programming model for portfolio optimization based on entropy and higher moments. Expert Systems with Applications, 94, 185-192. Bec, F., Nielsen, H. B., and S., Saïdi. 2019. Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing. Université de Cergy-Pontoise. No. hal-02175760. 2019. Bernardi, M., and L., Catania. 2018. Portfolio optimisation under flexible dynamic dependence modelling. Journal of Empirical Finance, 48, 1-18. Blasques, F., Koopman, S. J., and M., Nientker. 2018. A Time-Varying Parameter Model for Local Explosions. TinbergenInstitute Discussion Paper, No. TI 2018-088/III. Boldi, M. O., and A. C., Davison. 2007. A mixture model for multivariate extremes. Journal of the Royal Statistical Society: Series B, 69, 217-229. Boudt, K., Lu, W., and B., Peeters. 2015. Higher order comoments of multifactor models and asset allocation. Finance Research Letters, 13, 225-233. Cambanis, S., and S., Fotopoulos. 1995. Conditional variance for stable random vectors. Probability and Mathematical Statistics, Wrocław University, 15, 195-214. Cambanis, S., and W., Wu. 1992. Multiple regression on stable vectors. Journal of multivariate analysis, 41, 243-272. Cavaliere, G., Nielsen, H.B, and A. Rahbek. 2017. Bootstrapping non-causal autoregressions: with applications to explosive bubble modelling. Forthcoming in Journal of Business and Economic Statistics. Chen, B., Choi, J., and J. C., Escanciano. 2017. Testing for fundamental vector moving average representations. Quantitative Economics, 8, 149-180. Cioczek-Georges, R., and M. S., Taqqu. 1994. How do conditional moments of stable vectors depend on the spectral measure? Stochastic processes and their applications, 54, 95-111. Cioczek-Georges, R., and M. S., Taqqu. 1995. Form of the conditional variance for stable random variables. Statistica Sinica, 351-361. Cioczek-Georges, R., and M. S., Taqqu. 1995. Necessary conditions for the existence of conditional moments of stable random variables. Stochastic processes and their applications, 56, 233-246. Cioczek-Georges, R., and M. S., Taqqu. 1998. Sufficient conditions for the existence of conditional moments of stable random variables. Stochastic Processes and Related Topics, Birkhäuser Boston, 35-67. Ferro, C. A., and J., Segers. 2003. Inference for clusters of extreme values. Journal of the Royal Statistical Society: Series B, 65, 545-556. Fotopoulos, S. B. 1998. On the conditional variance-covariance of stable random vectors, II.Stochastic Processes and Related Topics, Birkhäuser Boston, 123-140. Fries, S. 2018. Path prediction of aggregated alpha-stable moving averages using semi-norm representations. ArXiv preprint arXiv:1809.03631. Fries, S., and J.-M., Zakoian. 2019. Mixed causal-noncausal AR processes and the modelling of explosive bubbles. Econometric Theory, 35, 1234-1270. González-Pedraz, C., Moreno, M., and J. I., Peña. 2015. Portfolio selection with commodities under conditional copulas and skew preferences. Quantitative Finance, 15, 151-170. Gouriéroux, C., Hencic, A., and J., Jasiak. 2019. Forecast Performance and Bubble Analysis in Noncausal MAR (1,1) Processes. Toulouse School of Economics. 10.13140/RG.2.2.25135.38568. Gouriéroux, C., and J., Jasiak. 2016. Filtering, prediction and simulation methods for noncausal processes. Journal of Time Series Analysis, 37, 405-430. Gouriéroux, C., Jasiak, J. and A., Monfort. 2016. Stationary bubble equilibria in rational expectation models. Working Papers from Centre de Recherche en Economie et Statistique (CREST), No 2016-31. Gouriéroux, C. and J.-M., Zakoian. 2017. Local explosion modelling by non-causal process. Journal of the Royal Statistical Society: Series B. 79, 737-756. Hanson, S. G., Kashyap, A. K., and J. C., Stein. 2011. A macroprudential approach to financial regulation.Journal of economic Perspectives, 25, 3-28. Hardin Jr, C. D., Samorodnitsky, G., and M. S., Taqqu. 1991. Nonlinear regression of stable random variables.The Annals of Applied Probability, 582-612. Harvey, C. R., Liechty, J. C., Liechty, M. W., and P., Müller. 2010. Portfolio selection with higher moments. Quantitative Finance, 10, 469-485. Harvey, C. R., and A., Siddique. 1999. Autoregressive conditional skewness. Journal of financial and quantitative analysis,34, 465-487. Hecq, A., and L., Sun. 2019. Identification of Noncausal Models by Quantile Autoregressions. arXiv preprint arXiv:1904.05952. Hecq, A., Lieb, L., and S. M., Telg. 2016. Identification of mixed causal-noncausal models in finite samples. Annals of Economics and Statistics, 123/124, 307-331. Hecq, A., Telg, S., and L., Lieb. 2017. Do seasonal adjustments induce noncausal dynamics in inflation rates? Econometrics,5, 48. Hecq, A., Telg, S., and L, Lieb. 2017. Simulation, estimation and selection of mixed causal-noncausal autoregressive models:The MARX Package. Available at SSRN: https://ssrn.com/abstract=3015797. Hencic, A., and C., Gouriéroux. 2015. Noncausal autoregressive model in application to Bitcoin/USD exchange rates. Econometrics of Risk, Springer International Publishing, 17-40. Holly, A., Monfort, A., and M., Rockinger. 2011. Fourth order pseudo maximum likelihood methods. Journal of Econometrics, 162, 278-293. Ibragimov, R., and A., Prokhorov. 2016. Heavy tails and copulas: Limits of diversification revisited. Economics Letters,149, 102-107. Johansen, A., Sornette, D., and O., Ledoit. 1999. Predicting financial crashes using discrete scale invariance. arXiv preprintcond-mat/9903321. Jondeau, E., and M., Rockinger. 2006. Optimal portfolio allocation under higher moments. European Financial Management, 12, 29-55. Jondeau, E., and M., Rockinger. 2012. On the importance of time variability in higher moments for asset allocation. Journal of Financial Econometrics, 10, 84-123. Karcher, W., Shmileva, E., and E., Spodarev. 2013. Extrapolation of stable random fields. Journal of Multivariate Analysis, 115, 516-536. Lai, T. Y. 1991. Portfolio selection with skewness: a multiple-objective approach.Review of Quantitative Finance and Accounting, 1, 293. Lai, K. K., Yu, L., and S., Wang. 2006. Mean-variance-skewness-kurtosis-based portfolio optimization. In First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06). 2, 292-297. IEEE. Lanne, M., Luoto, J., and P, Saikkonen. 2012. Optimal forecasting of noncausal autoregressive time series. International Journal of Forecasting, 28, 623-631. Lanne, M., Nyberg, H., and E., Saarinen. 2012. Does noncausality help in forecasting economic time series?Economics Bulletin, 32, 2849-2859. Lanne, M., and P., Saikkonen. 2011. Noncausal autogressions for economic time series. Journal of Time Series Econometrics, 3. Lanne, M., and P., Saikkonen. 2013. Noncausal vector autoregression. Econometric Theory, 29, 447-481. Ledford, A. W., and J. A., Tawn. 2003. Diagnostics for dependence within time series extremes.Journal of the Royal Statistical Society: Series B, 65, 521-543. McCulloch, J. H. 1997. Measuring tail thickness to estimate the stable index alpha: A critique. Journal of Business & Economic Statistics, 15, 74-81. Miller, G. 1978. Properties of certain symmetric stable distributions. Journal of Multivariate Analysis, 8, 346–360. Phillips, P. C., Shi, S., and J., Yu. 2015. Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International economic review, 56, 1043-1078. Phillips, P. C., Wu, Y., and J., Yu. 2011. Explosive behavior in the 1990s Nasdaq: When did exuberance escalate asset values?. International economic review, 52, 201-226 Rootzen, H. 1978. Extremes of moving averages of stable processes. The Annals of Probability, 6, 847-869. Samorodnitsky, G., and M. S., Taqqu. 1991. Conditional moments and linear regression for stable random variables. Stochastic processes and their applications, 39, 183-199. Samorodnitsky, G., and M. S., Taqqu. 1994.Stable non-Gaussian random processes, Chapman & Hall, London, 516-536. Sornette, D. 2003. Critical market crashes. Physics Reports, 378, 1-98. Sornette, D. 2017.Why stock markets crash: critical events in complex financial systems Vol. 49. Princeton University Press. Sornette, D., and A., Johansen. 2001. Significance of log-periodic precursors to financial crashes. Quantitative Finance, 1,452-471. Voisin, E., and A., Hecq. 2019. Forecasting bubbles with mixed causal-noncausal autoregressive models. Maastricht University. https://mpra.ub.uni-muenchen.de/92734/ Wadsworth, J. L., Tawn, J. A., Davison, A. C., and D. M., Elton. 2017. Modelling across extremal dependence classes. Journal of the Royal Statistical Society: Series B, 79, 149-175. Wu, W., and S., Cambanis. 1991. Conditional variance of symmetric stable variables.Stable Processes and Related Topics (pp. 85-99). Birkhäuser Boston. Zolotarev, V. M. 1986.One-dimensional stable distributions. Vol. 65, American Mathematical Society. Zou, J., Davis, R. A., and G., Samorodnitsky. 2017. Extreme value analysis without the largest values: what can be done?. Probability in the Engineering and Informational Sciences, 1-21. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97353 |
Available Versions of this Item
- Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds. (deposited 04 Dec 2019 14:16) [Currently Displayed]