Abito, Jose Miguel (2019): Estimating Production Functions with Fixed Effects.
Preview |
PDF
MPRA_paper_97825.pdf Download (270kB) | Preview |
Abstract
I propose an estimation procedure that can accommodate fixed effects in the widely used proxy variable approach to estimating production functions. The procedure allows unobserved productivity to have a permanent component in addition to a (nonlinear) Markov shock. The procedure does not rely on differencing out the fixed effect and thus is not restricted to within-firm variation for identification. Finally, the procedure is easy to implement as it only entails adding a two stage least squares step using internal instruments.
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimating Production Functions with Fixed Effects |
Language: | English |
Keywords: | Production function, Estimation, Fixed Effects, Unobserved productivity, Proxy variables, Errors-in-Variables, Instrumental variables |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics L - Industrial Organization > L0 - General L - Industrial Organization > L0 - General > L00 - General O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity |
Item ID: | 97825 |
Depositing User: | Jose Miguel Abtio |
Date Deposited: | 08 Jan 2020 09:46 |
Last Modified: | 08 Jan 2020 09:46 |
References: | Ackerberg, D. A (2016), ``Timing Assumptions and Efficiency: Empirical Evidence in a Production Function Context,'' working paper. Ackerberg, D. A., K. Caves and G. Frazer (2015), ``Identification Properties of Recent Production Function Estimators,'' \emph{Econometrica}, 83:6, 2411-2451. Arellano, M. and S. Bond (1991), ``Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations,''\emph{Review of Economic Studies}, 58:2, 277-297. Arellano, M. and O. Bover (1995), ``Another Look at the Instrumental Variable Estimation of Error-Components Models,'' \emph{Journal of Econometrics} 68:1, 29-51. Asker, J. A. Collard-Wexler and J. De Loecker (2014), ``Dynamic Inputs and Resource (Mis)Allocation,'' \emph{Journal of Political Economy}, 122:5, 1013-1063. Berkson, J. (1950), ``Are There Two Regressions?'' \emph{Journal of the American Statistical Association}, 45:250, 164-180. Blundell, R. and S. Bond (1998), ``Initial Conditions and Moment Restrictions in Dynamic Panel Data Models,'' \emph{Journal of Econometrics}, 87, 115-143. Blundell, R. and S. Bond (2000), ``GMM Estimation with persistent panel data: an application to production functions,'' \emph{Econometric Reviews}, 19:3, 321-340. Chen, X., H. Hong and D. Nekipelov (2011), ``Nonlinear Models of Measurement Errors,'' \emph{Journal of Economic Literature}, 49:4, 901-937. Collard-Wexler, A. and J. De Loecker (2016), ``Production Function Estimation with Measurement Error in Inputs,'' working paper. Gandhi, A., S. Navarro and D. Rivers, ``On the Identification of Gross Output Production Functions,'' \emph{Journal of Political Economy}, forthcoming. Griliches, Z., and J. Hausman (1986), ``Errors in Variables in Panel Data,'' \emph{Journal of Econometrics}, 31, 93-118. Griliches, Z., and J. Mairesse (1998), ``Production Functions: The Search for Identification,'' in \emph{Econometrics and Economic Theory in the Twentieth Century: The Ragnar Frisch Centennial Symposium}, ed. by S. Strøm, Cambridge, U.K.: Cambridge University Press. Hausman, J., W. Newey, H. Ichimura, and J. Powell (1991), ``Measurement Errors in Polynomial Regression Models,'' \emph{Journal of Econometrics}, 50, 273-295. Hu, Y., G. Huang and Y. Sasaki (2019), ``Estimating production functions with robustness against errors in the proxy variables,'' \emph{Journal of Econometrics}, forthcoming. Hu, Y. and S. Schennach (2008), ``Instrumental Variable Treatment of Nonclassical Measurement Error Models,'' \emph{Econometrica}, 76:1, 195-216. Kim, K., A. Petrin, and S. Song (2016), ``Estimating production functions with control functions when capital is measured with error,'' \emph{Journal of Econometrics}, 190:2, 267-279. Lee, Stoyanov and Zubanov (2019), ``Olley and Pakes?style Production Function Estimators with Firm Fixed Effects,'' \emph{Oxford Bulletin of Economics and Statistics}, 81:1, 79-97. Levinsohn, J. and A. Petrin (2003), ``Estimating Production Functions Using Inputs to Control for Unobservables,'' \emph{Review of Economic Studies}, 70:2, 317-341. Marschak, J. and W. Andrews (1944), ``Random Simultaneous Equations and the Theory of Production,'' \emph{Econometrica}, 12:3/4, 143-205. Olley, S. and A. Pakes (1996), ``The Dynamics of Productivity in the Telecommunications Equipment Industry,'' \emph{Econometrica}, 64:6, 1263-1297. Schennach, S. M. (2007), ``Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models,'' \emph{Econometrica}, 75:1, 201-239. Syverson, C. (2011), ``What Determines Productivity?'' \emph{Journal of Economic Literature}, 49:2, 326-365. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97825 |