Malikov, Emir and Zhao, Shunan and Kumbhakar, Subal C. (2020): Estimation of Firm-Level Productivity in the Presence of Exports: Evidence from China's Manufacturing.
Preview |
PDF
MPRA_paper_98077.pdf Download (775kB) | Preview |
Abstract
Motivated by the longstanding interest of economists in understanding the nexus between firm productivity and export behavior, this paper develops a novel structural framework for control-function-based nonparametric identification of the gross production function and latent firm productivity in the presence of endogenous export opportunities that is robust to recent unidentification critiques of proxy estimators. We provide a workable identification strategy, whereby the firm's degree of export orientation provides the needed (excluded) relevant independent exogenous variation in endogenous freely varying inputs, thus allowing us to identify the production function. We estimate our fully nonparametric IV model using the Landweber-Fridman regularization with the unknown functions approximated via artificial neural network sieves with a sigmoid activation function which are known for their superior performance relative to other popular sieve approximators, including the polynomial series favored in the literature. Using our methodology, we obtain robust productivity estimates for manufacturing firms from twenty eight industries in China during the 1999-2006 period to take a close look at China's exporter productivity puzzle, whereby exporters are found to exhibit lower productivity levels than non-exports.
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimation of Firm-Level Productivity in the Presence of Exports: Evidence from China's Manufacturing |
Language: | English |
Keywords: | ANN sieves, control function, export, nonparametric, productivity, proxy, regularized estimation, TFP |
Subjects: | D - Microeconomics > D2 - Production and Organizations > D22 - Firm Behavior: Empirical Analysis D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity F - International Economics > F1 - Trade > F10 - General L - Industrial Organization > L1 - Market Structure, Firm Strategy, and Market Performance > L10 - General L - Industrial Organization > L6 - Industry Studies: Manufacturing > L60 - General |
Item ID: | 98077 |
Depositing User: | Dr. Emir Malikov |
Date Deposited: | 13 Jan 2020 03:49 |
Last Modified: | 13 Jan 2020 03:49 |
References: | Ackerberg, D. A., Benkard, C. L., Berry, S., & Pakes, A. (2007). Econometric tools for analyzing market outcomes. In J. J. Heckman & E. E. Leamer (Eds.), Handbook of Econometrics, volume 6A. North Holland. Ackerberg, D. A., Caves, K., & Frazer, G. (2015). Identification properties of recent production function estimators. Econometrica, 83, 2411-2451. Ackerberg, D. A. & Hahn, J. (2015). Some nonparametric identification results using timing and information set assumptions. Mimeo, University of California Los Angeles. Andrews, D. W. K. (2017). Examples of L2-complete and boundedly-complete distributions. Journal of Econometrics, 199, 213-220. Aw, B.-Y. & Hwang, A. R. (1995). Productivity and the export market: A firm-level analysis. Journal of Development Economics, 47, 313-332. Baldwin, J. R. & Gu, W. (2003). Export-market participation and productivity performance in Canadian manufacturing. Canadian Journal of Economics, 36, 634-657. Bernard, A. B., Eaton, J., Jensen, J. B., & Korum, S. (2003). Plants and productivity in international trade. American Economic Review, 93, 1268-1290. Blundell, R., Chen, X., & Kristensen, D. (2007). Semi-nonparametric IV estimation of shape-invariant Engel curves. Econometrica, 75, 1613-1669. Brandt, L., Tombe, T., & Zhu, Z. (2013). Factor market distortions across time, space and sectors in China. Review of Economic Dynamics, 16, 39-58. Carrasco, M., Florens, J. P., & Renault, E. (2007). Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization. In J. J. Heckman & E. E. Leamer (Eds.), Handbook of Econometrics, volume 6B. North Holland. Centorrino, S., Feve, F., & Florens, J. P. (2017). Additive nonparametric instrumental regressions: A guide to implementation. Journal of Econometric Methods, 6. Chen, X., Hahn, J., Liao, Z., & Ridder, G. (2015). Asymptotic properties of nonparametric two-step sieve estimates. Working Paper, University of California Los Angeles. Cooper, R. & Willis, J. (2003). The cost of labor adjustment: Inference from the gap. NBER Working Paper 10006. Craven, P. & Wahba, G. (1979). Smoothing noisy data with spline functions. Numerische Mathematik, 13, 377-403. Darolles, S., Fan, Y., Florens, J. P., & Renualt, E. (2011). Nonparametric instrumental regression. Econometrica, 79, 1541-1565. De Loecker, J. (2007). Do exports generate higher productivity? Evidence from Slovenia. Journal of International Economics, 73, 69-98. Delgado, M. A., Farinas, J. C., & Ruano, S. (2002). Firm productivity and export markets: A non-parametric approach. Journal of International Economics, 57, 397-422. Doraszelski, U. & Jaumandreu, J. (2013). R&D and productivity: Estimating endogenous productivity. Review of Economic Studies, 80, 1338-1383. Ericson, R. & Pakes, A. (1995). Markov-perfect industry dynamics: A framework for empirical work. Review of Economic Studies, 62, 53-82. Florens, J. P., Racine, J. S., & Centorrino, S. (2018). Nonparametric instrumental variable derivative estimation. Journal of Nonparametric Statistics, 30, 368-391. Freyberger, J. (2017). On completeness and consistency in nonparametric instrumental variable models. Econometrica, 85, 1629-1644. Gandhi, A., Navarro, S., & Rivers, D. (2017). On the identification of gross output production functions. Journal of Political Economy. forthcoming. Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods. Taylor & Francis Group, LLC. Grieco, P. L. E., Li, S., & Zhang, H. (2016). Production function estimation with unobserved input price dispersion. International Economic Review, 57, 665-689. Griliches, Z. & Mairesse, J. (1998). Production functions: The search for identification. In Econometrics and Economic Theory in the Twentieth Century: The Ragnar Frisch Centennial Symposium (pp. 169{203). Cambridge University Press. Guariglia, A., Liu, X., & Song, L. (2011). Internal finance and growth: Microeconometric evidence on Chinese firms. Journal of Development Economics, 96, 79-94. Hall, P. & Horowitz, J. L. (2005). Nonparametric methods for inference in the presence of instrumental variables. Annals of Statistics, 33, 2904-2929. Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feedforward networks are universal approximators. Neural Networks, 2, 359-366. Johannes, J., Van Bellegem, S., & Vanhems, A. (2013). Iterative regularisation in nonparametric instrumental regression. Journal of Statistical Planning and Inference, 143, 24-39. Kuan, C.-M. & White, H. (1994b). Reply to comments on "Artificial neural networks: An econometric perspective". Econometric Reviews, 13, 139-143. Levinsohn, J. & Petrin, A. (2003). Estimating production functions using inputs to control for unobservables. Review of Economic Studies, 70, 317-341. Lu, D. (2010). Exceptional exporter performance? Evidence from Chinese manufacturing firms. Working Paper, University of Chicago. Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. Annals of Statistics, 21, 255-285. Marschak, J. & Andrews, W. H. (1944). Random simultaneous equations and the theory of production. Econometrica, 12, 143-205. Melitz, M. J. (2003). The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica, 71, 1695-1725. Newey, W. K., Powell, J. L., & Vella, F. (1999). Nonparametric estimation of triangular equations models. Econometrica, 67 (3), 565-603. Olley, G. S. & Pakes, A. (1996). The dynamics of productivity in the telecommunications equipment industry. Econometrica, 64, 1263-1297. Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1999). Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing. European Journal of Operational Research, 114, 589-601. Van Biesebroeck, J. (2005). Exporting raises productivity in sub-Saharan African manufacturing firms. Journal of International Economics, 67, 373-391. White, H. (1989). Some asymptotic results for learning in single hidden-layer feedforward network models. Journal of the American Statistical Association, 84, 1003-1013. Yu, M. (2014). Processing trade, tariff reductions and firm productivity: Evidence from Chinese firms. Economic Journal. forthcoming. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/98077 |