Adeniyi, Isaac Adeola and Yahya, Waheed Babatunde (2020): Bayesian Generalized Linear Mixed Effects Models Using NormalIndependent Distributions: Formulation and Applications. Forthcoming in: AStAAdvances in Statistical Analysis

PDF
MPRA_paper_99165.pdf Download (1MB)  Preview 


PDF
MPRA_paper_99165.pdf Download (1MB)  Preview 
Abstract
A standard assumption is that the random effects of Generalized Linear Mixed Effects Models (GLMMs) follow the normal distribution. However, this assumption has been found to be quite unrealistic and sometimes too restrictive as revealed in many reallife situations. A common case of departures from normality includes the presence of outliers leading to heavytailed distributed random effects. This work, therefore, aims to develop a robust GLMM framework by replacing the normality assumption on the random effects by the distributions belonging to the NormalIndependent (NI) class. The resulting models are called the NormalIndependent GLMM (NIGLMM). The four special cases of the NI class considered in these models’ formulations include the normal, Studentt, Slash and contaminated normal distributions. A full Bayesian technique was adopted for estimation and inference. A reallife data set on cotton bolls was used to demonstrate the performance of the proposed NIGLMM methodology.
Item Type:  MPRA Paper 

Original Title:  Bayesian Generalized Linear Mixed Effects Models Using NormalIndependent Distributions: Formulation and Applications 
English Title:  Bayesian Generalized Linear Mixed Effects Models Using NormalIndependent Distributions: Formulation and Applications 
Language:  English 
Keywords:  Generalized Linear Mixed Effects Models, NormalIndependent class, Normal density, Studentt, Slash density, Bayesian Method. 
Subjects:  C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C11  Bayesian Analysis: General C  Mathematical and Quantitative Methods > C5  Econometric Modeling > C53  Forecasting and Prediction Methods ; Simulation Methods C  Mathematical and Quantitative Methods > C6  Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63  Computational Techniques ; Simulation Modeling 
Item ID:  99165 
Depositing User:  Professor Waheed Babatunde Yahya 
Date Deposited:  23 Mar 2020 03:07 
Last Modified:  06 Jun 2020 03:59 
References:  Adeniyi, I.A., Shobanke, D. A. and Edogbanya H. O. (2019). Reparameterization of the COMPoisson Distribution Using Spectral Algorithms. Pakistan Journal of Statistics and Operation Research, 15(3): 701712. Adeniyi, I.A., Yahya, W. B. and Ezenweke C. P. (2018). A Note on Pharmacokinetics Modelling of Theophylline Concentration Data on Patients with Respiratory Diseases. Turkiye Klinikleri Journal of Biostatistics;10(1):2745. Agresti, A., Caffo, B. and OhmanStrickland, P. (2004). Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. J. Comput. Graph. Statist., 47: 639–653. Azzalini A. and Capitanio A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society Series B, 61: 579–602. Azzalini A. and DallaValle A. (1996). The multivariates skewnormal distribution. Biometrika, 8: 715–726. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88: 9–25. Brooks, S. P. (1998) Markov chain Monte Carlo method and its application. The Statistician, 47: 69–100. Cameron, A.C. and Trivedi, P.K. (1998). Regression Analysis of Count Data. Cambridge University Press. Cambridge, UK. Casella, G. and George, E. (1992) Explaining the Gibbs sampler. American Statistician, 46: 167–74. Chen, R. and Huang, Y. (2016). MixedEffects Models with Skewed Distributions for TimeVarying Decay Rate in HIV Dynamics. Commun. Stat. Simul. Comput, 45(2): 737–757. Chen J., Zhang, D., and Davidian, M. (2002). A Monte Carlo EM algorithm for generalized linear mixed models with flexible random effects distribution. Biostatistics, 3: 347–360. Chen, G. and Luo, S. (2016). Robust Bayesian hierarchical model using normal/independent distributions. Biometrical Journal, 58(4): 831–85. Conway, R. W. and Maxwell, W. L. (1962). A queuing model with state dependent service rates. Journal of Industrial Engineering, 12, 132–136. da Silva, A. M., Degrande, P. E., Fernandes, M. G., Suekane, R., and Zeviani, W. M. (2012). Impacto de diferentes níveis de desfolha artificial nos estádios fenológicos do algodoeiro. Revista de Ciências Agrárias, 35(1), 163172. Davidian, M. Gilitinan D.M. (1995) Nonlinear models for repeated measurement data. London: Chapman & Hall. Fahrmeir, L. and Tutz, G.T. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models, 2nd edition. SpringerVerlag, New York. Fernandez C. and Steel M. F. (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93:359–371. Gallant, A. R. and Nychka, D. W. (1987). Seminonparametric maximum likelihood estimation. Econometrica, 55: 363–390. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6: 721–741. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis, Second Edition. New York: Chapman and Hall. Gelman, A. and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457511. Ghosh P., Branco M., and Chakraborty H. (2007). Bivariate random effect model using skew normal distribution with application to HIVRNA. Statistics in Medicine, 26: 1255–1267. Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996) Markov Chain Monte Carlo in Practice. Chapman & Hall, London. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57: 97–109. Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88: 973–985 Huang, Y. Chen, R. and Dagne, G. (2011). Simultaneous Bayesian Inference for Linear, Nonlinear and Semiparametric MixedEffects Models with SkewNormality and Measurement Errors in Covariates. The International Journal of Biostatistics, 7(1). Lachos V. H., Bandyopadhyay D. and Dey D.K. (2011). Linear and nonlinear mixedeffects models for censored HIV viral loads using normal/independent distributions. Biometrics. 2011; 67(4):1594–1604. Lachos, V. H., Castro, L. M., and Dey, D. K. (2013). Bayesian inference in nonlinear mixed–effects models using normal independent distributions. Computational Statistics & Data Analysis, 64: 237–252. Laird, N.M. and Ware, J.H. (1982). Randomeffects models for longitudinal data. Biometrics, 38: 963974. Lange, K. L., Little, R., and Taylor, J. (1989). Robust statistical modeling using t distribution. Journal of the American Statistical Association, 84: 881–896. Lange, K. L. and Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics, 2: 175–198. Li, Y., Brown, P., Rue, H., al Maini, M., and Fortin, P. (2012) Spatial modelling of lupus incidence over 40 years with changes in census areas. Journal of the Royal Statistical Society: Series C, 61 (1), 99115. Lin, T. I. and Lee, J. C. (2007). Estimation and prediction in linear mixed models with skewnormal random effects for longitudinal data. Statistics in Medicine, 27: 14901507. Litiere, S., Alonso, A. and Molenberghs, G. (2007). Type I and type II error under randomeffects misspecification in generalized linear mixed models. Biometrics, 63: 1038–1044. Litiere, S., Alonso, A. and Molenberghs, G. (2008). The impact of a misspecified randomeffects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Stat. Med., 27: 3125–3144. Liu, C. (1996). Bayesian robust multivariate linear regression with incomplete data. Journal of the American Statistical Association, 91. McCullagh, P. and Nelder, J. A. (1997). Generalized Linear Models, 2nd edition. Chapman & Hall/CRC. McCulloch, C.E. and Searle, S.R. (2001). Generalized, Linear, and Mixed Models. Wiley, New York. Meza, C., Osorio, F., and de la Cruz, R. (2012). Estimation in nonlinear mixedeffects models using heavytailed distributions. Statistics and Computing, 22: 121–139. Neuhaus, J.M., Hauck, W.W. and Kalbfleisch, J.D. (1992). The effects of mixture distribution misspecification when fitting mixedeffects logistic models. Biometrika, 79: 755 – 762. Osiewalski, J. (1999). Bayesian analysis of nonlinear regression with equicorrelated elliptical errors. Test, 8: 339–344. Osiewalski, J. and Steel, M. F. J. (1993). Robust Bayesianinference in elliptic regression models. Journal of Econometrics, 57, 345–363. Osorio, F., Paula, G. A., and Galea, M. (2007). Assessment of local influence in elliptical linear models with longitudinal structure. Computational Statistics and Data Analysis, 51: 4354–4368. Pinheiro, J. and Bates, D. (1995). Approximations to the loglikelihood function in the nonlinear mixedeffects model. Journal of Computational and Graphical Statistics, 4: 12–35. Pinheiro, J. and Bates, D. (2000). MixedEffects Models in S and SPLUS. Springer, New York. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.Vienna, Austria. URL: http://www.Rproject.org/. Rodriguez, G. and Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 158: 73–89. Rosa, G. J. M., Padovani, C. R., and Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biometrical Journal, 45: 573–590. Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B, 71 (2), 135. Sahu S., Dey D. K., and Branco M. D. (2003). A new class of multivariate skew distribution with application to Bayesian regression models. The Canadian Journal of Statistics, 31(2): 129150. Samuels, M. L., Witmer, J. A., and Schaffner A. A. (2012). Statistics for the Life Sciences, 4th edition. Prentice Hall, Boston. Savalli, C., Paula, G. A., and Cysneiros, F. (2006). Assessment of variance components in elliptical linear mixed models. Statistical Modelling, 6: 59–76. Schall, R. (1991). Estimation in generalized linear models with random effects. Biometrika, 78: 717727. Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S. and Boatwright, P. (2005). A useful distribution for fitting discrete data: revival of the ConwayMaxwellPoisson distribution. Applied Statistics, 54, 127–142. Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004). Bayesian Approach to Clinical Trials and Healthcare Evaluation. John Wiley & Sons, Ltd, Chichester, UK. Spiegelhalter, D. J. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 64(4): 583639. Verbeke, G. and Lesaffre, E. (1996). A liner mixedeffects models with heterogeneity in the random effects population. Journal of the American Statistical Association, 433: 217–221. Zeger, S. L. and Karim, M. R. (1991). Generalized linear models with random effects: a Gibbs sampling approach. Journal of the American Statistical Association, 86:79–86. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer, New York. Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. (2000) WinBUGS  a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325337. Zeviani, W. M., Riberio Jr, P. J., Bonat, W. H., Shimakura, S. E., and Muniz, J. A. (2014) The Gammacount distribution in the analysis of experimental underdispersed data. Journal of Applied Statistics. 41, 26162626. 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/99165 